scholarly journals Modeling and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Minghui Yao ◽  
Wei Zhang ◽  
D. M. Wang

This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.

2013 ◽  
Vol 2013 ◽  
pp. 1-27 ◽  
Author(s):  
Minghui Yao ◽  
Wei Zhang

This paper investigates the multipulse global bifurcations and chaotic dynamics for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate by using an energy phase method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1 : 2 internal resonance and primary parametric resonance. The energy phase method is used for the first time to investigate the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The paper demonstrates how to employ the energy phase method to analyze the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications. Numerical simulations show that for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate, the Shilnikov type multipulse chaotic motions can occur. Overall, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists.


2014 ◽  
Vol 24 (11) ◽  
pp. 1450138 ◽  
Author(s):  
W. L. Hao ◽  
W. Zhang ◽  
M. H. Yao

This paper studies the global bifurcations and multipulse chaotic dynamics of a four-edge simply supported honeycomb sandwich rectangular plate under combined in-plane and transverse excitations. Based on the von Karman type equation for the geometric nonlinearity and Reddy's third-order shear deformation theory, the governing equations of motion are derived for the four-edge simply supported honeycomb sandwich rectangular plate. The Galerkin method is employed to discretize the partial differential equations of motion to a three-degree-of-freedom nonlinear system. The six-dimensional nonautonomous nonlinear system is simplified to a three-order standard form by using the normal form method. The extended Melnikov method is improved to investigate the six-dimensional nonautonomous nonlinear dynamical system in a mixed coordinate. The global bifurcations and multipulse chaotic dynamics of the four-edge simply supported honeycomb sandwich rectangular plate are studied by using the improved extended Melnikov method. The multipulse chaotic motions of the system are found by using numerical simulation, which further verifies the result of theoretical analysis.


Author(s):  
Wei Zhang ◽  
Yutong Huang

The nonlinear dynamic behavior of a laminated composite cantilever plate is investigated in this paper. The extended Melnikov method is employed to predict the multi-pulse chaotic motions of the cantilever plate. The model is based on the wing flutter of the airplane. The cantilever plate is considered to be subjected to the in-plane and transversal excitations. The Reddy’s high-order shear deformation theory as well as von Ka´rma´n type equations are used to establish the equation of motion for the cantilever plate. Applying the Galerkin procedure to the partial differential governing equations of motion for the system, we obtain equations of transverse displacement. Then the method of multiple scales is used to obtain the averaged equations. Finally, the extended Melnikov method is used to analyze the nonlinear behavior in the cantilever plate system. The theoretical result shows that there exists multi-pulse jumping movement. The numerical results also reveal such chaotic phenomenon.


Author(s):  
Wei Zhang ◽  
Jun-Hua Zhang

The global bifurcations and multi-pulse chaotic dynamics of a simply supported laminated composite piezoelectric rectangular thin plate under combined parametric and transverse excitations are investigated in this paper for the first time. The formulas of the laminated composite piezoelectric rectangular plate are derived by using the von Karman-type equation, the Reddy’s third-order shear deformation plate theory and the Galerkin’s approach. The extended Melnikov method is improved to enable us to analyze directly the non-autonomous nonlinear dynamical system, which is applied to the non-autonomous governing equations of motion for the laminated composite piezoelectric rectangular thin plate. The results obtained here indicate that the multi-pulse chaotic motions can occur in the laminated composite piezoelectric rectangular thin plate. Numerical simulation is also employed to find the multi-pulse chaotic motions of the laminated composite piezoelectric rectangular thin plate.


Author(s):  
Yan Zheng ◽  
Wei Zhang ◽  
Tao Liu

Abstract The researches of global bifurcations and chaotic dynamics for high-dimensional nonlinear systems are extremely challenging. In this paper, we study the multi-pulse orbits and chaotic dynamics of an eccentric rotating composite laminated circular cylindrical shell. The four-dimensional averaged equations are obtained by directly using the multiple scales method under the case of the 1:2 internal resonance and principal parametric resonance-1/2 subharmonic resonance. The system is transformed to the averaged equations. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the extended Melnikov method is utilized to analyze the multi-pulse global homoclinic bifurcations and chaotic dynamics for the eccentric rotating composite laminated circular cylindrical shell. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the eccentric rotating composite laminated circular cylindrical shell are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the eccentric rotating composite laminated circular cylindrical shell.


Author(s):  
Zhi-Gang Yao ◽  
Wei Zhang

The bifurcations and chaotic motions of a simply supported symmetric cross-ply composite laminated piezoelectric rectangular plate are analyzed for the first time, which are forced by the transverse and in-plane excitations. It is assumed that different layers of symmetric cross-ply composite laminated piezoelectric rectangular plate are perfectly bonded to each other and with piezoelectric actuator layers embedded in the plate. Based on the Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the composite laminated piezoelectric rectangular plate are derived by using the Hamilton’s principle. The excitation loaded by piezoelectric layers is considered. The Galerkin’s approach is employed to discretize partial differential governing equations to a two-degree-of-freedom nonlinear system under combined the parametric and external excitations. The method of multiple scales is utilized to obtain the four-dimensional averaged equation. Numerical method is used to find the periodic and chaotic motions of the composite laminated piezoelectric rectangular plate. The numerical results show the existence of the periodic and chaotic motions in the averaged equation. It is found that the chaotic responses are especially sensitive to the forcing and the parametric excitations. The influence of the transverse, in-plane and piezoelectric excitations on the bifurcations and chaotic behaviors of the composite laminated piezoelectric rectangular plate is investigated numerically.


Author(s):  
Jun-Hua Zhang ◽  
Wei Zhang ◽  
Qian Wang

The heteroclinic bifurcation and multi-pulse chaotic dynamics of a simply-supported symmetric cross-ply composite laminated rectangular plate with parametric and forcing excitations are investigated in this paper for the first time. The formulas of the simply-supported composite laminated rectangular plate are derived by using Hamilton’s principle and the Galerkin’s approach. The extended Melnikov method is improved to enable us to analyze directly the non-autonomous nonlinear dynamical system, which is applied to the non-autonomous governing equations of motion for the simply-supported composite laminated rectangular plate. The results obtained here indicate that the multi-pulse chaotic motions can occur in the simply-supported composite laminated rectangular plate. Numerical simulation is also employed to find the multipulse chaotic motions of the simply-supported composite laminated rectangular plate.


2014 ◽  
Vol 24 (05) ◽  
pp. 1450068 ◽  
Author(s):  
Junhua Zhang ◽  
Wei Zhang ◽  
Yuxin Hao

The extended Melnikov method is improved to investigate the nonautonomous nonlinear dynamical system in Cartesian coordinate. The multipulse chaotic dynamics of a simply supported functionally graded materials (FGM) rectangular plate subjected to transversal and in-plane excitations is investigated in this paper for the first time. The formulas of the FGM rectangular plate are two-degree-of-freedom nonautonomous nonlinear system with coupling of nonlinear terms including several square and cubic terms. The extended Melnikov method is improved to enable us to analyze directly the nonautonomous nonlinear dynamical system of the simply-supported FGM rectangular plate. The results obtained here indicate that multipulse chaotic motions can occur in the simply-supported FGM rectangular plate. Numerical simulation is also employed to find the multipulse chaotic motions of the simply-supported FGM rectangular plate.


Author(s):  
Wei Zhang ◽  
Jun-Hua Zhang ◽  
Ming-Hui Yao

The multi-pulse Shilnikov orbits and chaotic dynamics for a parametrically excited, simply supported rectangular buckled thin plate are studied by using the extended Melnikov method. Based on von Karman type equation and the Galerkin’s approach, two-degree-of-freedom nonlinear system is obtained for the rectangular thin plate. The extended Melnikov method is directly applied to the non-autonomous governing equations of the thin plate. The results obtained here show that the multipulse chaotic motions can occur in the thin plate.


Author(s):  
Ming-Hui Yao ◽  
Wei Zhang ◽  
Dong-Xing Cao

The multi-pulse orbits and chaotic dynamics of the cantilevered pipe conveying pulsating fluid with harmonic external force are studied in detail. The nonlinear geometric deformation of the pipe and the Kelvin constitutive relation of the pipe material are considered. The nonlinear governing equations of motion for the cantilevered pipe conveying pulsating fluid are determined by using Hamilton principle. The four-dimensional averaged equation under the case of principle parameter resonance, 1/2 subharmonic resonance and 1:2 internal resonance and primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin approach to the partial differential governing equation of motion for the cantilevered pipe. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the cantilevered pipe conveying pulsating fluid. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the cantilevered pipe are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the pulsating fluid conveying cantilevered pipe.


Sign in / Sign up

Export Citation Format

Share Document