disease outbreak detection
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Rui Feng ◽  
Qiping Hu ◽  
Yingan Jiang

Background: The outbreak of COVID-19 in 2019 has rapidly swept the world, causing irreparable loss to human beings. The pandemic has shown that there is still a delay in the early response to disease outbreaks and needs a method for unknown disease outbreak detection. The study's objective is to establish a new medical knowledge representation and reasoning model, and use the model to explore the feasibility of unknown disease outbreak detection.Methods: The study defined abnormal values with diagnostic significances from clinical data as the Features, and defined the Features as the antecedents of inference rules to match with knowledge bases, achieved in detecting known or emerging infectious disease outbreaks. Meanwhile, the study built a syndromic surveillance base to capture the target cases' Features to improve the reliability and fault-tolerant ability of the system.Results: The study combined the method with Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and early COVID-19 outbreaks as empirical studies. The results showed that with suitable surveillance guidelines, the method proposed in this study was capable to detect outbreaks of SARS, MERS, and early COVID-19 pandemics. The quick matching accuracies of confirmed infection cases were 89.1, 26.3–98%, and 82%, and the syndromic surveillance base would capture the Features of the remaining cases to ensure the overall detection accuracies. Based on the early COVID-19 data in Wuhan, this study estimated that the median time of the early COVID-19 cases from illness onset to local authorities' responses could be reduced to 7.0–10.0 days.Conclusions: This study offers a new solution to transfer traditional medical knowledge into structured data and form diagnosis rules, enables the representation of doctors' logistic thinking and the knowledge transmission among different users. The results of empirical studies demonstrate that by constantly inputting medical knowledge into the system, the proposed method will be capable to detect unknown diseases from existing ones and perform an early response to the initial outbreaks.


2020 ◽  
Vol 10 (5) ◽  
pp. 1115-1127
Author(s):  
Kavi Khedo ◽  
Shakuntala Baichoo ◽  
Soulakshmee Devi Nagowah ◽  
Zahra Mungloo-Dilmohamud ◽  
Zarine Cadersaib ◽  
...  

10.29007/z8tp ◽  
2020 ◽  
Author(s):  
Izzat Alsmadi ◽  
Zaid Almubaid ◽  
Hisham Al-Mubaid

In the recent years, people are becoming more dependent on the Internet as their main source of information about healthcare. A number of research projects in the past few decades examined and utilized the internet data for information extraction in healthcare including disease surveillance and monitoring. In this paper, we investigate and study the potential of internet data like internet search keywords and search query patterns in the healthcare domain for disease monitoring and detection. Specifically, we investigate search keyword patterns for disease outbreak detection. Accurate prediction and detection of disease outbreaks in a timely manner can have a big positive impact on the entire health care system. Our method utilizes machine learning in identifying interesting patterns related to target disease outbreak from search keyword logs. We conducted experiments on the flu disease, which is the most searched disease in the interest of this problem. We showed examples of keywords that can be good predictors of outbreaks of the flu. Our method proved that the correlation between search queries and keyword trends are truly reliable in the sense that it can be used to predict the outbreak of the disease.


Author(s):  
Stephane Ghozzi ◽  
Benedikt Zacher ◽  
Alexander Ullrich

ObjectiveBy systematically scoring algorithms and integrating outbreak data through statistical learning, evaluate and improve the performance of automated infectious-disease-outbreak detection. The improvements should be directly relevant to the epidemiological practice. A broader objective is to explore the usefulness of machine-learning approaches in epidemiology.IntroductionWithin the traditional surveillance of notifiable infectious diseases in Germany, not only are individual cases reported to the Robert Koch Institute, but also outbreaks themselves are recorded: A label is assigned by epidemiologists to each case, indicating whether it is part of an outbreak and of which. This expert knowledge represents, in the language of machine leaning, a "ground truth" for the algorithmic task of detecting outbreaks from a stream of surveillance data. The integration of this kind of information in the design and evaluation of algorithms is called supervised learning.MethodsReported cases were aggregated weekly and divided into two count time series, one for endemic (not part of an outbreak) and one for epidemic cases. Two new algorithms were developed for the analysis of such time series: farringtonOutbreak is an adaptation of the standard method farringtonFlexible as implemented in the surveillance R package: It trains on endemic case counts but detects anomalies on total case counts. The second algorithm is hmmOutbreak, which is based on a hidden Markov model (HMM): A binary hidden state indicates whether an outbreak was reported in a given week, the transition matrix for this state is learned from the outbreak data and this state is integrated as factor in a generalised linear model of the total case count. An explicit probability of being in a state of outbreak is then computed for each week (one-week ahead) and a signal is generated if it is higher than a user-defined threshold.To evaluate performance, we framed outbreak detection as a simple binary classification problem: Is there an outbreak in a given week, yes or no? Was a signal generated for this week, yes or no? One can thus count, for each time series, the true positives (outbreak data and signals agree), false positives, true negatives and false negatives. From those, classical performance scores can be computed, such as sensitivity, specificity, precision, F-score or area under the ROC curve (AUC).For the evaluation with real-word data we used time series of reported cases of salmonellosis and campylobacteriosis for each of the 412 German counties over 9 years. We also ran simple simulations with different parameter sets, generating count time series and outbreaks with the sim.pointSource function of the surveillance R package.ResultsWe have developed a supervised-learning framework for outbreak detection based on reported infections and outbreaks, proposing two algorithms and an evaluation method. hmmOutbreak performs overall much better than the standard farringtonFlexible, with e.g. a 60% improvement in sensitivity (0.5 compared to 0.3) at a fixed specificity of 0.9. The results were confirmed by simulations. Furthermore, the computation of explicit outbreak probabilities allows a better and clearer interpretation of detection results than the usual testing of the null hypothesis "is endemic".ConclusionsMethods of machine learning can be usefully applied in the context of infectious-disease surveillance. Already a simple HMM shows large improvements and better interpretability: More refined methods, in particular semi-supervised approaches, look thus very promising. The systematic integration of available expert knowledge, in this case the recording of outbreaks, allows an evaluation of algorithmic performance that is of direct relevance for the epidemiological practice, in contrast to the usual intrinsic statistical metrics. Beyond that, this knowledge can be readily used to improve that performance and, in the future, gain insights in outbreak dynamics. Moreover, other types of labels will be similarly integrated in automated surveillance analyses, e.g. user feedback on whether a signal was relevant (reinforcement learning) or messages on specialised internet platforms that were found to be useful warnings of international epidemic events.


2017 ◽  
Vol 46 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Ruiping Wang ◽  
Yonggen Jiang ◽  
Xiaoqin Guo ◽  
Yiling Wu ◽  
Genming Zhao

Objective The Chinese Center for Disease Control and Prevention developed the China Infectious Disease Automated-alert and Response System (CIDARS) in 2008. The CIDARS can detect outbreak signals in a timely manner but generates many false-positive signals, especially for diseases with seasonality. We assessed the influence of seasonality on infectious disease outbreak detection performance. Methods Chickenpox surveillance data in Songjiang District, Shanghai were used. The optimized early alert thresholds for chickenpox were selected according to three algorithm evaluation indexes: sensitivity (Se), false alarm rate (FAR), and time to detection (TTD). Performance of selected proper thresholds was assessed by data external to the study period. Results The optimized early alert threshold for chickenpox during the epidemic season was the percentile P65, which demonstrated an Se of 93.33%, FAR of 0%, and TTD of 0 days. The optimized early alert threshold in the nonepidemic season was P50, demonstrating an Se of 100%, FAR of 18.94%, and TTD was 2.5 days. The performance evaluation demonstrated that the use of an optimized threshold adjusted for seasonality could reduce the FAR and shorten the TTD. Conclusions Selection of optimized early alert thresholds based on local infectious disease seasonality could improve the performance of the CIDARS.


2017 ◽  
Vol 15 (4) ◽  
pp. 475-489 ◽  
Author(s):  
S. Coly ◽  
N. Vincent ◽  
E. Vaissiere ◽  
M. Charras-Garrido ◽  
A. Gallay ◽  
...  

Hundreds of waterborne disease outbreaks (WBDO) of acute gastroenteritis (AGI) due to contaminated tap water are reported in developed countries each year. Such outbreaks are probably under-detected. The aim of our study was to develop an integrated approach to detect and study clusters of AGI in geographical areas with homogeneous exposure to drinking water. Data for the number of AGI cases are available at the municipality level while exposure to tap water depends on drinking water networks (DWN). These two geographical units do not systematically overlap. This study proposed to develop an algorithm which would match the most relevant grouping of municipalities with a specific DWN, in order that tap water exposure can be taken into account when investigating future disease outbreaks. A space-time detection method was applied to the grouping of municipalities. Seven hundred and fourteen new geographical areas (groupings of municipalities) were obtained compared with the 1,310 municipalities and the 1,706 DWN. Eleven potential WBDO were identified in these groupings of municipalities. For ten of them, additional environmental investigations identified at least one event that could have caused microbiological contamination of DWN in the days previous to the occurrence of a reported WBDO.


Sign in / Sign up

Export Citation Format

Share Document