bayesian mixture
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 69)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Vol 309 ◽  
pp. 118341
Author(s):  
Alessandro Brusaferri ◽  
Matteo Matteucci ◽  
Stefano Spinelli ◽  
Andrea Vitali

Author(s):  
Guilllermo Granados-Garcia ◽  
Marc Fiecas ◽  
Shahbaba Babak ◽  
Norbert J. Fortin ◽  
Hernando Ombao

2021 ◽  
Author(s):  
Guhan Ram Venkataraman ◽  
Yosuke Tanigawa ◽  
Matti Pirinen ◽  
Manuel A Rivas

Rare-variant aggregate analysis from exome and whole genome sequencing data typically summarizes with a single statistic the signal for a gene or the unit that is being aggre- gated. However, when doing so, the effect profile within the unit may not be easily characterized across one or multiple phenotypes. Here, we present an approach we call Multiple Rare-Variants and Phenotypes Mixture Model (MRPMM), which clusters rare variants into groups based on their effects on the multivariate phenotype and makes statistical inferences about the properties of the underlying mixture of genetic effects. Using summary statistic data from a meta-analysis of exome sequencing data of 184,698 individuals in the UK Biobank across 6 populations, we demonstrate that our mixture model can identify clusters of variants responsible for significantly disparate effects across a multivariate phenotype; we study three lipid and three renal traits separately. The method is able to estimate (1) the proportion of non-null variants, (2) whether variants with the same predicted consequence in one gene behave similarly, (3) whether variants across genes share effect profiles across the multivariate phenotype, and (4) whether different annotations differ in the magnitude of their effects. As rare-variant data and aggregation techniques become more common, this method can be used to ascribe further meaning to association results.


2021 ◽  
Vol 18 (181) ◽  
pp. 20201031
Author(s):  
Peter Ranacher ◽  
Nico Neureiter ◽  
Rik van Gijn ◽  
Barbara Sonnenhauser ◽  
Anastasia Escher ◽  
...  

When speakers of different languages interact, they are likely to influence each other: contact leaves traces in the linguistic record, which in turn can reveal geographical areas of past human interaction and migration. However, other factors may contribute to similarities between languages. Inheritance from a shared ancestral language and universal preference for a linguistic property may both overshadow contact signals. How can we find geographical contact areas in language data, while accounting for the confounding effects of inheritance and universal preference? We present sBayes , an algorithm for Bayesian clustering in the presence of confounding effects. The algorithm learns which similarities are better explained by confounders, and which are due to contact effects. Contact areas are free to take any shape or size, but an explicit geographical prior ensures their spatial coherence. We test sBayes on simulated data and apply it in two case studies to reveal language contact in South America and the Balkans. Our results are supported by findings from previous studies. While we focus on detecting language contact, the method can also be used to uncover other traces of shared history in cultural evolution, and more generally, to reveal latent spatial clusters in the presence of confounders.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-21
Author(s):  
Huandong Wang ◽  
Yong Li ◽  
Mu Du ◽  
Zhenhui Li ◽  
Depeng Jin

Both app developers and service providers have strong motivations to understand when and where certain apps are used by users. However, it has been a challenging problem due to the highly skewed and noisy app usage data. Moreover, apps are regarded as independent items in existing studies, which fail to capture the hidden semantics in app usage traces. In this article, we propose App2Vec, a powerful representation learning model to learn the semantic embedding of apps with the consideration of spatio-temporal context. Based on the obtained semantic embeddings, we develop a probabilistic model based on the Bayesian mixture model and Dirichlet process to capture when , where , and what semantics of apps are used to predict the future usage. We evaluate our model using two different app usage datasets, which involve over 1.7 million users and 2,000+ apps. Evaluation results show that our proposed App2Vec algorithm outperforms the state-of-the-art algorithms in app usage prediction with a performance gap of over 17.0%.


Sign in / Sign up

Export Citation Format

Share Document