wildfire planning
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 483
Author(s):  
Melanie Colavito

Decision support systems (DSSs) are increasingly common in forest and wildfire planning and management in the United States. Recent policy direction and frameworks call for collaborative assessment of wildfire risk to inform fuels treatment prioritization using the best available science. There are numerous DSSs applicable to forest and wildfire planning, which can support timely and relevant information for decision making, but the use and adoption of these systems is inconsistent. There is a need to elucidate the use of DSSs, specifically those that support pre-wildfire, spatial planning, such as wildfire risk assessment and forest fuels treatment prioritization. It is important to understand what DSSs are in use, barriers and facilitators to their use, and recommendations for improving their use. Semi-structured interviews with key informants were used to assess these questions. Respondents identified numerous barriers, as well as recommendations for improving DSS development and integration, specifically with respect to capacity, communication, implementation, question identification, testing, education and training, and policy, guidance, and authorities. These recommendations can inform DSS use for wildfire risk assessment and treatment prioritization to meet the goals of national policies and frameworks. Lastly, a framework for organizing spatial, pre-wildfire planning DSSs to support end-user understanding and use is provided.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 909
Author(s):  
Matthew P. Thompson ◽  
Benjamin M. Gannon ◽  
Michael D. Caggiano ◽  
Christopher D. O’Connor ◽  
April Brough ◽  
...  

Wildland fire managers are increasingly embracing risk management principles by being more anticipatory, proactive, and “engaging the fire before it starts”. This entails investing in pre-season, cross-boundary, strategic fire response planning with partners and stakeholders to build a shared understanding of wildfire risks and management opportunities. A key innovation in planning is the development of potential operational delineations (PODs), i.e., spatial management units whose boundaries are relevant to fire containment operations (e.g., roads, ridgetops, and fuel transitions), and within which potential fire consequences, suppression opportunities/challenges, and strategic response objectives can be analyzed to inform fire management decision making. As of the summer of 2020, PODs have been developed on more than forty landscapes encompassing National Forest System lands across the western USA, providing utility for planning, communication, mitigation prioritization, and incident response strategy development. Here, we review development of a decision support tool—a POD Atlas—intended to facilitate cross-boundary, collaborative strategic wildfire planning and management by providing high-resolution information on landscape conditions, values at risk, and fire management resource needs for individual PODs. With the atlas, users can rapidly access and assimilate multiple forms of pre-loaded data and analytics in a customizable manner. We prototyped and operationalized this tool in concert with, and for use by, fire managers on several National Forests in the Southern Rocky Mountains of the USA. We present examples, discuss real-world use cases, and highlight opportunities for continued decision support improvement.


2020 ◽  
Author(s):  
Stephen R. Miller ◽  
Jaap Vos ◽  
Eric Lindquist ◽  
Deanna Smith ◽  
Scot Oliver ◽  
...  

2014 ◽  
Vol 6 (1) ◽  
pp. 1-27 ◽  
Author(s):  
K. C. Short

Abstract. The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). However, there are multiple federal, state, and local entities with wildfire protection and reporting responsibilities in the US, and no single, unified system of wildfire record keeping exists. To conduct even the most rudimentary interagency analyses of wildfire numbers and area burned from the authoritative systems of record, one must harvest records from dozens of disparate databases with inconsistent information content. The onus is then on the user to check for and purge redundant records of the same fire (i.e., multijurisdictional incidents with responses reported by several agencies or departments) after pooling data from different sources. Here we describe our efforts to acquire, standardize, error-check, compile, scrub, and evaluate the completeness of US federal, state, and local wildfire records from 1992–2011 for the national, interagency Fire Program Analysis (FPA) application. The resulting FPA Fire-Occurrence Database (FPA FOD) includes nearly 1.6 million records from the 20 yr period, with values for at least the following core data elements: location, at least as precise as a Public Land Survey System section (2.6 km2 grid), discovery date, and final fire size. The FPA FOD is publicly available from the Research Data Archive of the US Department of Agriculture, Forest Service (doi:10.2737/RDS-2013-0009). While necessarily incomplete in some aspects, the database is intended to facilitate fairly high-resolution geospatial analysis of US wildfire activity over the past two decades, based on available information from the authoritative systems of record.


2013 ◽  
Vol 6 (2) ◽  
pp. 297-366 ◽  
Author(s):  
K. C. Short

Abstract. The statistical analysis of wildfire activity is a critical component of national wildfire planning, operations, and research in the United States (US). However, there are multiple federal, state, and local entities with wildfire protection and reporting responsibilities in the US, and no single, unified system of wildfire record-keeping exists. To conduct even the most rudimentary interagency analyses of wildfire numbers and area burned from the authoritative systems of record, one must harvest records from dozens of disparate databases with inconsistent information content. The onus is then on the user to check for and purge redundant records of the same fire (i.e. multijurisdictional incidents with responses reported by several agencies or departments) after pooling data from different sources. Here we describe our efforts to acquire, standardize, error-check, compile, scrub, and evaluate the completeness of US federal, state, and local wildfire records from 1992–2011 for the national, interagency Fire Program Analysis (FPA) application. The resulting FPA Fire-occurrence Database (FPA FOD) includes nearly 1.6 million records from the 20 yr period, with values for at least the following core data elements: location at least as precise as a Public Land Survey System section (2.6 km2 grid), discovery date, and final fire size. The FPA FOD is publicly available from the Research Data Archive of the US Department of Agriculture, Forest Service (doi:10.2737/RDS-2013-0009). While necessarily incomplete in some aspects, the database is intended to facilitate fairly high-resolution geospatial analysis of US wildfire activity over the past two decades, based on available information from the authoritative systems of record.


Sign in / Sign up

Export Citation Format

Share Document