embedded discontinuities
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
B. Pantò ◽  
L. Macorini ◽  
B. A. Izzuddin

AbstractA great proportion of the existing architectural heritage, including historical and monumental constructions, is made of brick/block masonry. This material shows a strong anisotropic behaviour resulting from the specific arrangement of units and mortar joints, which renders the accurate simulation of the masonry response a complex task. In general, mesoscale modelling approaches provide realistic predictions due to the explicit representation of the masonry bond characteristics. However, these detailed models are very computationally demanding and mostly unsuitable for practical assessment of large structures. Macroscale models are more efficient, but they require complex calibration procedures to evaluate model material parameters. This paper presents an advanced continuum macroscale model based on a two-scale nonlinear description for masonry material which requires only simple calibration at structural scale. A continuum strain field is considered at the macroscale level, while a 3D distribution of embedded internal layers allows for the anisotropic mesoscale features at the local level. A damage-plasticity constitutive model is employed to mechanically characterise each internal layer using different material properties along the two main directions on the plane of the masonry panel and along its thickness. The accuracy of the proposed macroscale model is assessed considering the response of structural walls previously tested under in-plane and out-of-plane loading and modelled using the more refined mesoscale strategy. The results achieved confirm the significant potential and the ability of the proposed macroscale description for brick/block masonry to provide accurate and efficient response predictions under different monotonic and cyclic loading conditions.


2019 ◽  
Vol 214 ◽  
pp. 339-364 ◽  
Author(s):  
Ibrahim Bitar ◽  
Nathan Benkemoun ◽  
Panagiotis Kotronis ◽  
Stéphane Grange

2018 ◽  
Vol 18 (12) ◽  
pp. 04018170 ◽  
Author(s):  
Xiangnan Wang ◽  
Peng Yu ◽  
Jialin Yu ◽  
Yuzhen Yu ◽  
He Lv

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. T281-T289 ◽  
Author(s):  
Qianru Xu ◽  
Weijian Mao

We have developed a fast ray-tracing method for multiple layered inhomogeneous anisotropic media, based on the generalized Snell’s law. Realistic geologic structures continuously varying with embedded discontinuities are parameterized by adopting cubic B-splines with nonuniformly spaced nodes. Because the anisotropic characteristic is often closely related to the interface configuration, this model parameterization scheme containing the natural inclination of the corresponding layer is particularly suitable for tilted transverse isotropic models whose symmetry axis is generally perpendicular to the direction of the layers. With this model parameterization, the first- and second-order spatial derivatives of the velocity within the interfaces can be effectively obtained, which facilitates the amplitude computation in dynamic ray tracing. By using complex initial conditions for the dynamic ray system and taking the multipath effect into consideration, our method is applicable to Gaussian beam migration. Numerical experiments of our method have been used to verify its effectiveness, practicability, and efficiency in memory storage and computation.


Sign in / Sign up

Export Citation Format

Share Document