gruneisen parameters
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 12)

H-INDEX

33
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1217
Author(s):  
Yingxin Liu ◽  
Liyun Dai ◽  
Xiaojing Lai ◽  
Feng Zhu ◽  
Dongzhou Zhang ◽  
...  

The structural stability of vanadinite, Pb5[VO4]3Cl, is reported by high-pressure experiments using synchrotron radiation X-ray diffraction (XRD) and Raman spectroscopy. XRD experiments were performed up to 44.6 GPa and 700 K using an externally-heated diamond anvil cell (EHDAC), and Raman spectroscopy measurements were performed up to 26.8 GPa at room temperature. XRD experiments revealed a reversible phase transition of vanadinite at 23 GPa and 600 K, which is accompanied by a discontinuous volume reduction and color change of the mineral from transparent to reddish during compression. The high-pressure Raman spectra of vanadinite show apparent changes between 18.0 and 22.8 GPa and finally become amorphous at 26.8 GPa, suggesting structural transitions of this mineral upon compression. The structural changes can be distinguished by the emergence of a new vibrational mode that can be attributed to the distortion of [VO4] and the larger distortion of the V–O bonds, respectively. The [VO4] internal modes in vanadinite give isothermal mode Grüneisen parameters varying from 0.149 to 0.286, yielding an average VO4 internal mode Grüneisen parameters of 0.202.


2020 ◽  
Vol 153 (24) ◽  
pp. 244903
Author(s):  
Craig S. Stevenson ◽  
John G. Curro ◽  
John D. McCoy

2020 ◽  
Vol 102 (18) ◽  
Author(s):  
Jasmine K. Hinton ◽  
Christian Childs ◽  
Dean Smith ◽  
Paul B. Ellison ◽  
Keith V. Lawler ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 260
Author(s):  
Li Zhou ◽  
Terrence P. Mernagh ◽  
Bing Mo ◽  
Li Wang ◽  
Shuai Zhang ◽  
...  

The Raman spectra of barite and celestine were recorded from 25 to 600 °C at ambient pressure and both minerals were stable over the entire temperature range. Most of the Raman bands of barite decreased in wavenumber with increasing temperature with the exception of the ν2 modes and the ν4 band at 616 cm−1, which did not exhibit a significant temperature dependence. These vibrations may be constrained by the lower thermal expansion along the a-axis and b-axis of barite. Similar to barite, most of the Raman bands of celestine also decreased in wavenumber with increasing temperature, with the exception of the ν2 modes and the ν4 band at 622 cm−1, which showed very little variation with increasing temperature. Variations of Raman shift as a function of temperature and FWHM (full width at half maximum) as a function of Raman shift for the main, ν1 modes of barite and celestine show that both minerals have almost identical linear trends with a slope of −0.02 cm−1/°C and −0.5, respectively, which allows for the prediction of Raman shifts and FWHM up to much higher temperatures. The calculated isobaric and isothermal mode Grüneisen parameters and the anharmonicity parameters show that the M–O modes (M = Ba2+ and Sr2+) in barite and celestine exhibit much higher values of both mode Grüneisen parameters and anharmonicity than the SO4 tetrahedra. This indicates that the S–O distances and S–O–S angles are less sensitive to pressure and temperature increase than the M–O distances in the structure. Furthermore, the generally higher anharmonicity in celestine is due to the smaller size of the Sr2+ cation, which causes the celestine structure to be more distorted than the barite structure.


Sign in / Sign up

Export Citation Format

Share Document