lytic dna replication
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 1)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Vol 117 (22) ◽  
pp. 12368-12374 ◽  
Author(s):  
Natalia C. Drosu ◽  
Elazer R. Edelman ◽  
David E. Housman

Epstein–Barr virus (EBV) is a ubiquitous human γ-herpesvirus that establishes life-long infection and increases the risk for the development of several cancers and autoimmune diseases. The mechanisms by which chronic EBV infection leads to subsequent disease remain incompletely understood. Lytic reactivation plays a central role in the development of EBV-driven cancers and may contribute to other EBV-associated diseases. Thus, the clinical use of antivirals as suppressive therapy for EBV lytic reactivation may aid efforts aimed at disease prevention. Current antivirals for EBV have shown limited clinical utility due to low potency or high toxicity, leaving open the need for potent antivirals suitable for long-term prophylaxis. In the present study, we show that tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), drugs with excellent safety profiles used clinically for HIV prevention, inhibit EBV lytic DNA replication, with respective IC50values of 0.30 μM and 84 nM. In a cell-based assay, TAF was 35- and 24-fold and TDF was 10- and 7-fold more potent than acyclovir and penciclovir, respectively, and TAF was also twice as potent as ganciclovir. The active metabolite of tenofovir prodrugs, tenofovir-diphosphate, inhibited the incorporation of dATP into a primed DNA template by the EBV DNA polymerase in vitro. In contrast to acyclovir, treatment of cells during latency for 24 h with TAF still inhibited EBV lytic DNA replication at 72 h after drug was removed. Our results suggest that tenofovir prodrugs may be particularly effective as inhibitors of EBV lytic reactivation, and that clinical studies to address critical questions about disease prevention are warranted.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126088 ◽  
Author(s):  
Ruth Wang'ondu ◽  
Stuart Teal ◽  
Richard Park ◽  
Lee Heston ◽  
Henri Delecluse ◽  
...  

2012 ◽  
Vol 87 (1) ◽  
pp. 208-223 ◽  
Author(s):  
A. El-Guindy ◽  
M. Ghiassi-Nejad ◽  
S. Golden ◽  
H.-J. Delecluse ◽  
G. Miller

2011 ◽  
Vol 56 (2) ◽  
pp. 893-902 ◽  
Author(s):  
Lorenzo González-Molleda ◽  
Yan Wang ◽  
Yan Yuan

ABSTRACTThe lytic DNA replication of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates at an origin (ori-Lyt) and requirestrans-acting elements, both viral and cellular. We recently demonstrated that several host cellular proteins, including topoisomerases I and II (Topo I and II), are involved in KSHV lytic DNA replication (Y. Wang, H. Li, Q. Tang, G. G. Maul, and Y. Yuan. J. Virol. 82: 2867–2882, 2008). To assess the importance of these topoisomerases in viral lytic replication, shRNA-mediated gene silencing was used. Depletion of Topo I and II severely inhibited viral lytic DNA replication as well as virion production, suggesting essential roles of these cellular proteins in viral DNA replication. The discovery of Topo I and II as enzymes indispensable for KSHV DNA replication raises a possibility that these cellular proteins could be new targets of therapeutic approaches to halt KSHV replication and treat KSHV-associated diseases. In this report, we examined one Topo I inhibitor and several Topo II inhibitors (inclusive of Topo II poison and catalytic inhibitors) as potential therapeutic agents for blocking KSHV replication. The Topo II catalytic inhibitors in general exhibited marked inhibition on KSHV replication and minimal cytotoxicity. In particular, novobiocin, with the best selectivity index (SI = 31.62) among the inhibitors tested in this study, is effective in inhibiting KSHV DNA replication and virion production but shows little adverse effect on cell proliferation and cycle progression in its therapeutic concentration, suggesting its potential to become an effective and safe drug for the treatment of human diseases associated with KSHV infection.


2009 ◽  
Vol 83 (17) ◽  
pp. 8492-8501 ◽  
Author(s):  
Cyprian Rossetto ◽  
Irena Yamboliev ◽  
Gregory S. Pari

ABSTRACT The original cotransfection replication assay identified eight human herpesvirus 8 (HHV8)-encoded proteins required for origin-dependent lytic DNA replication. Previously, we demonstrated that under conditions where K-Rta is overexpressed, a K-bZIP knockout bacmid displayed an aberrant subcellular localization pattern for the latency-associated nuclear protein (LANA). Additionally, these same studies demonstrated that K-bZIP interacts with LANA in the absence of K-Rta and that K-bZIP does not directly participate in, but may facilitate, the initiation of lytic DNA synthesis. We developed a modification of the transient cotransfection replication assay wherein both lytic (oriLyt) and latent (terminal repeat) DNA replication are evaluated simultaneously. We now show that LANA represses origin-dependent lytic DNA replication in a dose dependent manner when added to the cotransfection replication assay. This repression was overcome by increasing amounts of a K-bZIP expression plasmid in the cotransfection mixture or by dominant-negative inhibition of the interaction of LANA with K-bZIP by the overexpression of the K-bZIP-LANA binding domain. Chromatin immunoprecipitation assays show that LANA interacts with oriLyt in the absence of K-bZIP expression, suggesting that suppression of lytic replication by LANA is mediated by direct binding. The interaction of K-bZIP with oriLyt was dependent upon the expression of LANA; however, LANA interacted with oriLyt independently of K-bZIP expression. These data suggest that the interaction of LANA with K-bZIP modulates lytic and latent replication and that K-bZIP facilitates lytic DNA replication and modulates the switch from the latent phase of the virus.


2009 ◽  
Vol 83 (10) ◽  
pp. 5219-5231 ◽  
Author(s):  
Jian Zhu ◽  
Gangling Liao ◽  
Liang Shan ◽  
Jun Zhang ◽  
Mei-Ru Chen ◽  
...  

ABSTRACT A conserved family of herpesvirus protein kinases plays a crucial role in herpesvirus DNA replication and virion production. However, despite the fact that these kinases are potential therapeutic targets, no systematic studies have been performed to identify their substrates. We generated an Epstein-Barr virus (EBV) protein array to evaluate the targets of the EBV protein kinase BGLF4. Multiple proteins involved in EBV lytic DNA replication and virion assembly were identified as previously unrecognized substrates for BGLF4, illustrating the broad role played by this protein kinase. Approximately half of the BGLF4 targets were also in vitro substrates for the cellular kinase CDK1/cyclin B. Unexpectedly, EBNA1 was identified as a substrate and binding partner of BGLF4. EBNA1 is essential for replication and maintenance of the episomal EBV genome during latency. BGLF4 did not prevent EBNA1 binding to sites in the EBV latency origin of replication, oriP. Rather, we found that BGLF4 was recruited by EBNA1 to oriP in cells transfected with an oriP vector and BGLF4 and in lytically induced EBV-positive Akata cells. In cells transfected with an oriP vector, the presence of BGLF4 led to more rapid loss of the episomal DNA, and this was dependent on BGLF4 kinase activity. Similarly, expression of doxycycline-inducible BGLF4 in Akata cells led to a reduction in episomal EBV genomes. We propose that BGLF4 contributes to effective EBV lytic cycle progression, not only through phosphorylation of EBV lytic DNA replication and virion proteins, but also by interfering with the EBNA1 replication function.


2008 ◽  
Vol 83 (5) ◽  
pp. 2393-2396 ◽  
Author(s):  
Yang Gao ◽  
Gregory S. Pari

ABSTRACT Human cytomegalovirus pUL84 is a phosphorylated protein that is required for lytic DNA replication and participates in regulation of virus gene expression. We previously used a proteomics assay to show that human cytomegalovirus pUL84 interacts with casein kinase 2 (CK2). We now have demonstrated that pUL84 is a substrate for CK2 in vitro, and we have determined that two putative CK2 phosphorylation sites within pUL84 mediate binding to CK2. Mutation of a threonine residue at amino acid (aa) 148 and a serine residue at aa 157 within the pUL84 protein resulted in the inability of the protein to interact with the CK2α subunit in transfected cells. Interaction of pUL84 with CK2 was essential for complementation of oriLyt-dependent DNA replication, suggesting that phosphorylation is an essential modification.


2008 ◽  
Vol 82 (6) ◽  
pp. 2867-2882 ◽  
Author(s):  
Yan Wang ◽  
Hong Li ◽  
Qiyi Tang ◽  
Gerd G. Maul ◽  
Yan Yuan

ABSTRACT Herpesvirus lytic DNA replication requires both the cis-acting element, the origin, and trans-acting factors, including virally encoded origin-binding protein, DNA replication enzymes, and auxiliary factors. Two lytic DNA replication origins (ori-Lyt) of Kaposi's sarcoma-associated herpesvirus (KSHV) have been identified, and two virally encoded proteins, namely, RTA and K8, have been shown to bind to the origins. In this study, we sought to identify cellular factors that associate with ori-Lyt by using DNA affinity purification and mass spectrometry. This approach led to identification of several cellular proteins that bind to KSHV ori-Lyt. They include topoisomerases (Topo) I and II, MSH2/6, RecQL, poly(ADP-ribose) polymerase I (PARP-1), DNA-PK, Ku86/70 autoantigens, and scaffold attachment factor A (SAF-A). RecQL appears to associate with prereplication complexes and be recruited to ori-Lyt through RTA and K8. Topoisomerases, MSH2, PARP-1, DNA-PK, and Ku86 were not detected in prereplication complexes but were present in replication initiation complexes on ori-Lyt. All these cellular proteins accumulate in viral replication compartments in the nucleus, indicating that these proteins may have a role in viral replication. Topo I and II appear to be essential for viral DNA replication as inhibition of their activities with specific inhibitors (camptothecin and ellipticine) blocked ori-Lyt-dependent DNA replication. Furthermore, inhibition of PARP-1 with chemical inhibitors (3-aminobenzamide and niacinamide) resulted in decreased ori-Lyt-dependent DNA replication, whereas hydroxyurea, which raises PARP-1 activity, caused an increase in the DNA replication, suggesting a positive role for PARP-1 in KSHV lytic DNA replication.


Sign in / Sign up

Export Citation Format

Share Document