cafeteria roenbergensis
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 2)

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Thomas Hackl ◽  
Roman Martin ◽  
Karina Barenhoff ◽  
Sarah Duponchel ◽  
Dominik Heider ◽  
...  

2019 ◽  
Vol 374 (1786) ◽  
pp. 20190086 ◽  
Author(s):  
David M. Needham ◽  
Camille Poirier ◽  
Elisabeth Hehenberger ◽  
Valeria Jiménez ◽  
Jarred E. Swalwell ◽  
...  

Giant viruses have remarkable genomic repertoires—blurring the line with cellular life—and act as top–down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four ‘PacV’ partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae , incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr ( e -value < 10 −5 ), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence–absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue ‘Single cell ecology’.


2019 ◽  
Author(s):  
Thomas Hackl ◽  
Roman Martin ◽  
Karina Barenhoff ◽  
Sarah Duponchel ◽  
Dominik Heider ◽  
...  

AbstractThe heterotrophic stramenopile Cafeteria roenbergensis is a globally distributed marine bacterivorous protist. This unicellular flagellate is host to the giant DNA virus CroV and the virophage mavirus. We sequenced the genomes of four cultured C. roenbergensis strains and generated 23.53 Gb of Illumina MiSeq data (99-282 × coverage per strain) and 5.09 Gb of PacBio RSII data (13-54 × coverage). Using the Canu assembler and customized curation procedures, we obtained high-quality draft genome assemblies with a total length of 34-36 Mbp per strain and contig N50 lengths of 148 kbp to 464 kbp. The C. roenbergensis genome has a GC content of ~70%, a repeat content of ~28%, and is predicted to contain approximately 7857-8483 protein-coding genes based on a combination of de novo, homology-based and transcriptome-supported annotation. These first high-quality genome assemblies of a Bicosoecid fill an important gap in sequenced Stramenopile representatives and enable a more detailed evolutionary analysis of heterotrophic protists.


2018 ◽  
Vol 78 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Daniele De Corte ◽  
Gabriela Paredes ◽  
Taichi Yokokawa ◽  
Eva Sintes ◽  
Gerhard J. Herndl

Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 468 ◽  
Author(s):  
Bradford Taylor ◽  
Joshua Weitz ◽  
Corina Brussaard ◽  
Matthias Fischer

The discovery of giant viruses in unicellular eukaryotic hosts has raised new questions on the nature of viral life. Although many steps in the infection cycle of giant viruses have been identified, the quantitative life history traits associated with giant virus infection remain unknown or poorly constrained. In this study, we provide the first estimates of quantitative infection traits of a giant virus by tracking the infection dynamics of the bacterivorous protist Cafeteria roenbergensis and its lytic virus CroV. Leveraging mathematical models of infection, we quantitatively estimate the adsorption rate, onset of DNA replication, latency time, and burst size from time-series data. Additionally, by modulating the initial ratio of viruses to hosts, we also provide evidence of a potential MOI-dependence on adsorption and burst size. Our work provides a baseline characterization of giant virus infection dynamics relevant to ongoing efforts to understand the ecological role of giant viruses.


Sign in / Sign up

Export Citation Format

Share Document