scholarly journals Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes

2019 ◽  
Vol 374 (1786) ◽  
pp. 20190086 ◽  
Author(s):  
David M. Needham ◽  
Camille Poirier ◽  
Elisabeth Hehenberger ◽  
Valeria Jiménez ◽  
Jarred E. Swalwell ◽  
...  

Giant viruses have remarkable genomic repertoires—blurring the line with cellular life—and act as top–down controls of eukaryotic plankton. However, to date only six cultured giant virus genomes are available from the pelagic ocean. We used at-sea flow cytometry with staining and sorting designed to target wild predatory eukaryotes, followed by DNA sequencing and assembly, to recover novel giant viruses from the Pacific Ocean. We retrieved four ‘PacV’ partial genomes that range from 421 to 1605 Kb, with 13 contigs on average, including the largest marine viral genomic assembly reported to date. Phylogenetic analyses indicate that three of the new viruses span a clade with deep-branching members of giant Mimiviridae , incorporating the Cafeteria roenbergensis virus, the uncultivated terrestrial Faunusvirus, one PacV from a choanoflagellate and two PacV with unclear hosts. The fourth virus, oPacV-421, is phylogenetically related to viruses that infect haptophyte algae. About half the predicted proteins in each PacV have no matches in NCBI nr ( e -value < 10 −5 ), totalling 1735 previously unknown proteins; the closest affiliations of the other proteins were evenly distributed across eukaryotes, prokaryotes and viruses of eukaryotes. The PacVs encode many translational proteins and two encode eukaryotic-like proteins from the Rh family of the ammonium transporter superfamily, likely influencing the uptake of nitrogen during infection. cPacV-1605 encodes a microbial viral rhodopsin (VirR) and the biosynthesis pathway for the required chromophore, the second finding of a choanoflagellate-associated virus that encodes these genes. In co-collected metatranscriptomes, 85% of cPacV-1605 genes were expressed, with capsids, heat shock proteins and proteases among the most highly expressed. Based on orthologue presence–absence patterns across the PacVs and other eukaryotic viruses, we posit the observed viral groupings are connected to host lifestyles as heterotrophs or phototrophs. This article is part of a discussion meeting issue ‘Single cell ecology’.

2018 ◽  
Author(s):  
Qingwei Yang ◽  
Chen Gao ◽  
Yong Jiang ◽  
Min Wang ◽  
Xinhao Zhou ◽  
...  

AbstractViruses are the most abundant biological entities in aquatic ecosystems and harbor an enormous genetic diversity. While their great influence on the marine ecosystems is widely acknowledged, current information about their diversity remains scarce. Aviral metagenomic analysis of two surfaces and one bottom water sample was conducted from sites on the South Scotia Ridge (SSR) near the Antarctic Peninsula, during the austral summer 2016. The taxonomic composition and diversity of the viral communities were investigated and a functional assessment of the sequences was determined. Phylotypic analysis showed that most viruses belonging to the order Caudovirales, in particular, the family Podoviridae (41.92-48.7%), which is similar to the viral communities from the Pacific Ocean. Functional analysis revealed a relatively high frequency of phage-associated and metabolism genes. Phylogenetic analyses of phage TerL and Capsid_NCLDV (nucleocytoplasmic large DNA viruses) marker genes indicated that many of the sequences associated with Caudovirales and NCLDV were novel and distinct from known complete phage genomes. High Phaeocystis globosa virus virophage (Pgvv) signatures were found in SSR area and complete and partial Pgvv-like were obtained which may have an influence on host-virus interactions in the area during summer. Our study expands the existing knowledge of viral communities and their diversities from the Antarctic region and provides basic data for further exploring polar microbiomes.ImportanceIn this study, we used high-throughput sequencing and bioinformatics analysis to analyze the viral community structure and biodiversity of SSR in the open sea near the Antarctic Peninsula. The results showed that the SSR viromes are novel, oceanic-related viromes and a high proportion of sequence reads was classified as unknown. Among known virus counterparts, members of the order Caudovirales were most abundant which is consistent with viromes from the Pacific Ocean. In addition, phylogenetic analyses based on the viral marker genes (TerL and MCP) illustrate the high diversity among Caudovirales and NCLDV. Combining deep sequencing and a random subsampling assembly approach, a new Pgvv-like group was also found in this region, which may a signification factor regulating virus-host interactions.


2006 ◽  
Vol 56 (8) ◽  
pp. 1911-1916 ◽  
Author(s):  
Haichun Gao ◽  
Anna Obraztova ◽  
Nathan Stewart ◽  
Radu Popa ◽  
James K. Fredrickson ◽  
...  

A novel marine bacterial strain, PV-4T, isolated from a microbial mat located at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has been characterized. This micro-organism is orangey in colour, Gram-negative, polarly flagellated, facultatively anaerobic and psychrotolerant (temperature range, 0–42 °C). No growth was observed with nitrate, nitrite, DMSO or thiosulfate as the electron acceptor and lactate as the electron donor. The major fatty acid detected in strain PV-4T was iso-C15 : 0. Strain PV-4T had ubiquinones consisting mainly of Q-7 and Q-8, and possessed menaquinone MK-7. The DNA G+C content of the strain was 53.8 mol% and the genome size was about 4.5 Mbp. Phylogenetic analyses based on 16S rRNA gene sequences placed PV-4T within the genus Shewanella. PV-4T exhibited 16S rRNA gene sequence similarity levels of 99.6 and 97.5 %, respectively, with respect to the type strains of Shewanella aquimarina and Shewanella marisflavi. DNA from strain PV-4T showed low mean levels of relatedness to the DNAs of S. aquimarina (50.5 %) and S. marisflavi (8.5 %). On the basis of phylogenetic and phenotypic characteristics, the bacterium was classified in the genus Shewanella within a distinct novel species, for which the name Shewanella loihica sp. nov. is proposed. The type strain is PV-4T (=ATCC BAA-1088T=DSM 17748T).


2019 ◽  
Vol 116 (41) ◽  
pp. 20574-20583 ◽  
Author(s):  
David M. Needham ◽  
Susumu Yoshizawa ◽  
Toshiaki Hosaka ◽  
Camille Poirier ◽  
Chang Jae Choi ◽  
...  

Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae. Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.


2020 ◽  
Vol 34 (2) ◽  
pp. 200
Author(s):  
Nicole K. Yen ◽  
Greg W. Rouse

Dorvilleidae is a diverse group of annelids found in many marine environments and also commonly associated with chemosynthetic habitats. One dorvilleid genus, Parougia, currently has 11 described species, of which two are found at vents or seeps: Parougia wolfi and Parougia oregonensis. Eight new Parougia species are recognised and described in this study from collections in the Pacific Ocean, all from whale-falls, hydrothermal vents, or methane seeps at ~600-m depth or greater. The specimens were studied using morphology and phylogenetic analyses of DNA sequences from mitochondrial (cytochrome c oxidase subunit I, 16S rRNA, and cytochrome b) and nuclear (18S rRNA and histone 3) genes. Six sympatric Parougia spp. were found at Hydrate Ridge, Oregon, while three of the Parougia species occurred at different types of chemosynthetic habitats. Two new species were found over wide geographical and bathymetric ranges. Another dorvilleid genus, Ophryotrocha, has previously been highlighted as diversifying in the deep-sea environment. Our results document the hitherto unknown diversity of another dorvilleid genus, Parougia, at various chemosynthetic environments. http://zoobank.org/urn:lsid:zoobank.org:pub:EC7EBBEA-2FB5-43D6-BE53-1A468B541A5C


2001 ◽  
Vol 28 (19) ◽  
pp. 3721-3724
Author(s):  
Cathy Stephens

Sign in / Sign up

Export Citation Format

Share Document