multistory frame
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Andreas Kaup ◽  
Hao Ding ◽  
Jinting Wang ◽  
Okyay Altay

Due to their unique hysteretic energy dissipation capacity, shape memory alloy (SMA) wires are particularly interesting for the development of new-type of intelligent vibration control systems for structures. However, in structural control, most of the vibrations occur in high strain rate regimes, which interfere the release of self-generated heat and thus influence the hysteretic dissipation. This paper proposes a strain rate dependent formulation of the latent heat evolution and aims to improve the accuracy of existing macroscopic modeling approaches developed for SMA wires particularly for the dynamic load cases. The proposed formulation is determined phenomenologically and implemented in a continuum thermomechanical framework based constitutive SMA wire model without impairing the simplicity and robustness of the solution process. The proposed formulation is validated by cyclic tensile tests conducted on SMA wires. Results show that the calculations using the formulation can predict the wire response more accurately than the strain rate independent formulation. For the simulation of multistory frame structures incorporating multiple SMA wires, the governing equations are driven. Shaking table tests are conducted on a 3-story frame structure under harmonic and seismic excitation. The responses of the structure are successfully replicated using the strain rate dependent latent heat formulation.


2017 ◽  
Vol 25 (2) ◽  
pp. e2079 ◽  
Author(s):  
Omar Kammouh ◽  
Stefano Silvestri ◽  
Michele Palermo ◽  
Gian Paolo Cimellaro

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Xuefei Zhao ◽  
Shuguang Wang ◽  
Dongsheng Du ◽  
Weiqing Liu

The seismic response control of multistory frame structures using optimally placed viscoelastic dampers (VEDs) within consideration of soil-structure interaction (SSI) effect is investigated in this paper. The system is assumed to be elastic and responses of the system are obtained in frequency domain for stationary random seismic excitations. The optimal designs of VEDs in structures are achieved through genetic algorithm (GA) by minimizing the maximum response quantities of the system for a determined total amount of viscoelastic material. Two typical elastic multistory frame structures with different soil types and foundation embedment ratios are considered to demonstrate the optimization process. It is shown that the VEDs have the best control of the structural response for fixed base condition and the control efficiency decreases as the soil becomes softer. The optimal placement types of VEDs for different soil types differ from each other. With the decrease of soil stiffness, the optimal locations of VEDs have a tendency to shift to top floors.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hongtao Hu ◽  
Byung Kwon Lee ◽  
Youfang Huang ◽  
Loo Hay Lee ◽  
Ek Peng Chew

This paper studies a new automated container terminal (ACT) system which utilizes multistory frame bridges and rail-mounted trolleys to transport containers between the quay and the yard. Beside typical ACT systems use trucks or automated guided vehicles for transporting containers between quay cranes and yard cranes, the new design uses three types of handling machines, namely, ground trolleys (GTs), transfer platforms (TPs), and frame trolleys (FTs). These three types of handling machines collaborate with one another to transport containers. This study decomposes the system into several subsystems. Each subsystem has one TP and several FTs and GTs dedicated to this TP. Then, a Markov chain model is developed to analyze the throughput of TPs. At last, the performance of the new ACT system is estimated. Sensitivity analyzes the numbers, and the processing rates of trolleys are conducted through the numeric experiments.


2011 ◽  
Vol 368-373 ◽  
pp. 1531-1534 ◽  
Author(s):  
Nan Zhao ◽  
Chang Ming Hu ◽  
Wen Yan

In order to control the safety of R.C structure, the construction loads of multistory frame reinforced concrete buildings in xi’an were selected as the research objective. Based on the characteristic of construction loads, the survey on the work site had carried on during the construction progress. Variation of concrete dead weight had been discussed. And the mathematics models of live loads in different stages of construction process for reinforced concrete buildings were proposed through statistic analysis. The standard values of construction live loads were suggested at last.


2011 ◽  
Vol 82 ◽  
pp. 770-777
Author(s):  
Dan Dubina ◽  
Florea Dinu

Multi-story building structures can suffer local damage or even structural collapse in case of extreme natural or man-made hazards. While all buildings are at a certain risk, some attributes can reduce the risk by reducing the vulnerability. One such attribute is the use of structural systems which can ensure that, in case of abnormal loads or failure of some elements, the collapse is prevented and the risk to occupants is reduced. Mitigation of some specific hazard can also help to reduce the risk, eg. protective barriers against impact or stand-off distance against direct effects of blast. Past experience has shown that structures that are designed according to seismic design philosophy can survive to a multiplicity of hazards. The objective of the paper is the adaptation of seismic design methodology to robust design demands of multistory frame buildings prone to multi-hazard scenarios. The hazard is modeled by removal of critical members. Nonlinear dynamic analyses are carried out in order to evaluate their robustness.


Sign in / Sign up

Export Citation Format

Share Document