automated container terminal
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 26)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 11 (15) ◽  
pp. 6922
Author(s):  
Jeongmin Kim ◽  
Ellen J. Hong ◽  
Youngjee Yang ◽  
Kwang Ryel Ryu

In this paper, we claim that the operation schedule of automated stacking cranes (ASC) in the storage yard of automated container terminals can be built effectively and efficiently by using a crane dispatching policy, and propose a noisy optimization algorithm named N-RTS that can derive such a policy efficiently. To select a job for an ASC, our dispatching policy uses a multi-criteria scoring function to calculate the score of each candidate job using a weighted summation of the evaluations in those criteria. As the calculated score depends on the respective weights of these criteria, and thus a different weight vector gives rise to a different best candidate, a weight vector can be deemed as a policy. A good weight vector, or policy, can be found by a simulation-based search where a candidate policy is evaluated through a computationally expensive simulation of applying the policy to some operation scenarios. We may simplify the simulation to save time but at the cost of sacrificing the evaluation accuracy. N-RTS copes with this dilemma by maintaining a good balance between exploration and exploitation. Experimental results show that the policy derived by N-RTS outperforms other ASC scheduling methods. We also conducted additional experiments using some benchmark functions to validate the performance of N-RTS.


2021 ◽  
Vol 9 (5) ◽  
pp. 459
Author(s):  
Yohan An ◽  
Namkyu Park

The purpose of this case study is to conduct an economic analysis to calculate the proper terminal capacity of automated container terminal (ACT) investment from the perspective of the public sector. As a key element of smart port, the ACT is an important terminal operating facility for import/export and transshipment cargo between countries and must have facilities with sufficient capacity to load/unload export/import cargo in a timely manner according to the user’s request. Recently, the method of calculating the capacity of seaport infrastructure is changing from the method of applying the maximum capacity to the method of applying the proper capacity. Therefore, it is desirable to expand port facilities by investigating proper capacity rather than expanding port facilities based on the maximum performance. This study is a case study focusing on the new port of Busan introducing the ACT. From the perspective of national fiscal income and national economy from the ACT investment, this study determines the proper terminal capacity for each berth. As a result of economic analysis, the break-even terminal capacity to secure economic feasibility is from 544,272TEU of the nine berths to 600,138TEU of two berths applying a 2.96% discount ratio. In a sensitivity analysis considering the social discount rate and the change in the size of berths, the net present value has a positive value from a minimum of 530,000 TEU (nine berths with 1.96% social discount ratio) to a maximum of 620,000 TEU (three berths with 3.46% social discount ratio).


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qinglei Zhang ◽  
Weixin Hu ◽  
Jianguo Duan ◽  
Jiyun Qin

The key problem of operation optimization for automated container terminal is the coordinated scheduling of automated quay crane (QC), automated guided vehicle (AGV), and automated stacking crane (ASC). In order to solve this problem, this paper proposed a new method to optimize the scheduling of ASC and AGV. In the automated container terminal, each container block is equipped with twin ASCs. At the same time, buffer zones are set at both ends of the container block to achieve the decoupling operation among ASC, AGV, and container truck. Considering the buffer capacity constraint and twin ASC operation interference, and introducing the design of handshake area, this paper developed a collaborative scheduling model of AGV and ASC in automatic terminal relay operation mode. This model is designed based on the genetic algorithm. The model aims to minimize the AGV waiting time and the ASC running time. The results indicated that the introduction of handshake area can effectively reduce the ASC operation interference by 10.56% on average. Also, it can be found that increasing buffer capacity can reduce the waiting time of AGV by about 4.25% on average, and the effect of relay operation is more obvious in large-scale operation. It was proved that buffer zone and handshake area can reduce task delay time and improve coordination between AGV and ASC.


2021 ◽  
Vol 353 ◽  
pp. 01024
Author(s):  
Panpan Zhang

In this paper automated container terminals were introduced and characteristics of the automated container terminals were summarized. Besides, a common problem of twist lock handling technology in automated container terminal was proposed. different kinds of automatic twist lock handling technologies and equipment were collected and analyzed. Finally, suggestions on twist lock handling were given. With demands of automated container terminals, the twist lock handling technology will still rapidly develop in future.


Sign in / Sign up

Export Citation Format

Share Document