scholarly journals Disentangling the Physical Origin of Emission Line Ratio Offsets at High Redshift with Spatially Resolved Spectroscopy

2021 ◽  
Vol 922 (1) ◽  
pp. 12
Author(s):  
Jessie Hirtenstein ◽  
Tucker Jones ◽  
Ryan L. Sanders ◽  
Crystal L. Martin ◽  
M. C. Cooper ◽  
...  

Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze Hα+[N ii], [S ii], and [S iii] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii]/Hβ versus [N ii]/Hα Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the Hα flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2σ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. In general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α-enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work.

Author(s):  
Baptiste Faure ◽  
Frédéric Bournaud ◽  
Jérémy Fensch ◽  
Emanuele Daddi ◽  
Manuel Behrendt ◽  
...  

Abstract High-redshift star-forming galaxies have very different morphologies compared to nearby ones. Indeed, they are often dominated by bright star-forming structures of masses up to 108 − 9 M⊙ dubbed «giant clumps». However, recent observations questioned this result by showing only low-mass structures or no structure at all. We use Adaptative Mesh Refinement hydrodynamical simulations of galaxies with parsec-scale resolution to study the formation of structures inside clumpy high-redshift galaxies. We show that in very gas-rich galaxies star formation occurs in small gas clusters with masses below 107 − 8 M⊙ that are themselves located inside giant complexes with masses up to 108 and sometimes 109 M⊙ . Those massive structures are similar in mass and size to the giant clumps observed in imaging surveys, in particular with the Hubble Space Telescope. Using mock observations of simulated galaxies, we show that at very high resolution with instruments like the Atacama Large Millimeter Array or through gravitational lensing, only low-mass structures are likely to be detected, and their gathering into giant complexes might be missed. This leads to the non-detection of the giant clumps and therefore introduces a bias in the detection of these structures. We show that the simulated giant clumps can be gravitationally bound even when undetected in mocks representative for ALMA observations and HST observations of lensed galaxies. We then compare the top-down fragmentation of an initially warm disc and the bottom-up fragmentation of an initially cold disc to show that the process of formation of the clumps does not impact their physical properties.


2020 ◽  
Vol 72 (2) ◽  
Author(s):  
Kazuyuki Ogura ◽  
Hideki Umehata ◽  
Yoshiaki Taniguchi ◽  
Yuichi Matsuda ◽  
Nobunari Kashikawa ◽  
...  

Abstract We present our ALMA Band 8 observations of a damped Ly$\alpha$ absorption (DLA) system at $z = 3.150$ observed in the spectrum of the quasar Q2233+131 at $z = 3.295$. The optical counterpart of this DLA has been identified and it shows a double-peaked Ly$\alpha$ emission line. Since one possible origin of DLAs at high redshift is an outflowing gas from star-forming galaxies, DLA 2233+131 provides a good laboratory to investigate the nature of high-z DLAs. Motivated by this, we have carried out ALMA band 8 observations to study the [C ii] line in this system. However, we do not detect any significant emission line in the observed pass bands. Instead, we have serendipitously found three submm continuum sources in the observed sky area. One appears to be the quasar Q2233+131 itself while the other two sources are newly identified submm galaxies (SMGs), called SMG1 and SMG2 in this paper. They are located at a separation of ${4{^{\prime \prime }_{.}}7}$ and ${8{^{\prime \prime }_{.}}1}$ from Q2233+131, respectively. Their 646 μm fluxes are $6.35\:$mJy and $6.43\:$mJy, respectively, being higher than that of Q2233+131, $3.62\:$mJy. Since these two SMGs are not detected in the optical images obtained with the Hubble Space Telescope and the Subaru Telescope, they have a very red spectral energy distribution. It is, therefore, suggested that they are high-redshift galaxies or very dusty galaxies at intermediate redshift, although we cannot rule out the possibility that they are optically very faint SMG analogs at low redshift. Follow-up observations will be necessary to explore the nature of this interesting region.


2020 ◽  
Vol 498 (1) ◽  
pp. 164-180 ◽  
Author(s):  
Harley Katz ◽  
Dominika Ďurovčíková ◽  
Taysun Kimm ◽  
Joki Rosdahl ◽  
Jeremy Blaizot ◽  
...  

ABSTRACT Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S ii]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S ii Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C ii]158 μm and [O iii]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.


2004 ◽  
Vol 615 (1) ◽  
pp. 98-117 ◽  
Author(s):  
Samantha A. Rix ◽  
Max Pettini ◽  
Claus Leitherer ◽  
Fabio Bresolin ◽  
Rolf‐Peter Kudritzki ◽  
...  

2019 ◽  
Vol 15 (S352) ◽  
pp. 121-122
Author(s):  
A. Plat ◽  
S. Charlot ◽  
G. Bruzual ◽  
A. Feltre ◽  
A. Vidal-Garca ◽  
...  

AbstractTo understand how the nature of the ionizing sources and the leakage of ionizing photons in high-redshift galaxies can be constrained from their emission-line spectra, we compare emission-line models of star-forming galaxies including leakage of ionizing radiation, active galactic nuclei (AGN) and radiative shocks, with observations of galaxies at various redshifts with properties expected to approach those of primeval galaxies.


2007 ◽  
Vol 660 (2) ◽  
pp. L93-L96 ◽  
Author(s):  
Yu Gao ◽  
Chris L. Carilli ◽  
Philip M. Solomon ◽  
Paul A. Vanden Bout

2020 ◽  
Vol 494 (2) ◽  
pp. 2312-2326 ◽  
Author(s):  
Cristiana Spingola ◽  
Anna Barnacka

ABSTRACT We present a multiwavelength analysis of two highly magnified strong gravitationally lensed galaxies, CLASS B0712+472 and CLASS B1608+656, at redshifts 1.34 and 1.394, respectively, using new VLBI (very long baseline interferometry) and archival Hubble Space Telescope observations. We reconstruct the positions of the radio and optical emissions with their uncertainties using Monte Carlo sampling. We find that in CLASS B0712+472 the optical and radio emissions are co-spatial within 2 ± 5 mas (17 ± 42 pc at redshift of 1.34). But, in CLASS B1608+656, we reconstruct an optical–radio offset of 25 ± 16 mas (214 ± 137 pc at redshift of 1.394), among the smallest offsets measured for an AGN (active galactic nucleus) at such high redshift. The spectral features indicate that CLASS B1608+656 is a post-merger galaxy, which, in combination with the optical–VLBI offset reported here, makes CLASS B1608+656 a promising candidate for a high- z offset–AGN. Furthermore, the milliarcsecond angular resolution of the VLBI observations combined with the precise lens models allow us to spatially locate the radio emission at 0.05 mas precision (0.4 pc) in CLASS B0712+472, and 0.009 mas precision (0.08 pc) in CLASS B1608+656. The search for optical–radio offsets in high redshift galaxies will be eased by the upcoming synoptic all-sky surveys, including Extremely Large Telescope and Square Kilometre Array, which are expected to find ∼105 strongly lensed galaxies, opening an era of large strong lensing samples observed at high angular resolution.


Author(s):  
David M. Nataf

AbstractThe assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ −1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ −1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ −1.0, a buckling thick disk for stars with − 1.0 ≲ [Fe/H]] ≲ -0.50 perhaps descended from the clumpy-galaxy phase, and a buckling thin disk for stars with [Fe/H] ≳ −0.50. Overlaps from these scenarios are uncertain throughout.


Sign in / Sign up

Export Citation Format

Share Document