Privacy-Preserving Mechanisms for Multi-Label Image Recognition
Multi-label image recognition has been an indispensable fundamental component for many real computer vision applications. However, a severe threat of privacy leakage in multi-label image recognition has been overlooked by existing studies. To fill this gap, two privacy-preserving models, Privacy-Preserving Multi-label Graph Convolutional Networks (P2-ML-GCN) and Robust P2-ML-GCN (RP2-ML-GCN), are developed in this article, where differential privacy mechanism is implemented on the model’s outputs so as to defend black-box attack and avoid large aggregated noise simultaneously. In particular, a regularization term is exploited in the loss function of RP2-ML-GCN to increase the model prediction accuracy and robustness. After that, a proper differential privacy mechanism is designed with the intention of decreasing the bias of loss function in P2-ML-GCN and increasing prediction accuracy. Besides, we analyze that a bounded global sensitivity can mitigate excessive noise’s side effect and obtain a performance improvement for multi-label image recognition in our models. Theoretical proof shows that our two models can guarantee differential privacy for model’s outputs, weights and input features while preserving model robustness. Finally, comprehensive experiments are conducted to validate the advantages of our proposed models, including the implementation of differential privacy on model’s outputs, the incorporation of regularization term into loss function, and the adoption of bounded global sensitivity for multi-label image recognition.