respiratory rhythmogenesis
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 2)

H-INDEX

21
(FIVE YEARS 1)

2019 ◽  
Author(s):  
Brian E. Cade ◽  
Jiwon Lee ◽  
Tamar Sofer ◽  
Heming Wang ◽  
Man Zhang ◽  
...  

AbstractSleep-disordered breathing (SDB) is a common disorder associated with significant morbidity. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program we report the first whole-genome sequence analysis of SDB. We identified 4 rare gene-based associations with SDB traits in 7,988 individuals of diverse ancestry and 4 replicated common variant associations with inclusion of additional samples (n=13,257). We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10−8) on chromosome X with ARMCX3. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Results highlighted associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis and HIF1A-mediated hypoxic response.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Kingman Perkins Strohl ◽  
Sausan Azzam ◽  
Dania Saleh

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Marc Chevalier ◽  
Rafaël De Sa ◽  
Laura Cardoit ◽  
Muriel Thoby-Brisson

Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections. Respiratory activity continuously changes under the impact of numerous modulatory substances depending on organismal needs and environmental conditions. The preBötC network has been shown to become active during the last third of gestation. But only little is known regarding the modulation of inspiratory rhythmicity at embryonic stages and even less on a possible role of pacemaker neurons in this functional flexibility during the prenatal period. By combining electrophysiology and calcium imaging performed on embryonic brainstem slice preparations, we provide evidence showing that embryonic inspiratory pacemaker neurons are already intrinsically sensitive to neuromodulation and external conditions (i.e., temperature) affecting respiratory network activity, suggesting a potential role of pacemaker neurons in mediating rhythm adaptation to modulatory stimuli in the embryo.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Alfredo Garcia ◽  
Tatiana Anderson ◽  
Aguan Wei ◽  
Jacob Bloom ◽  
Jan‐Marino Ramirez

2012 ◽  
Vol 113 (7) ◽  
pp. 1004-1011 ◽  
Author(s):  
Jun Ren ◽  
Xiuqing Ding ◽  
John J. Greer

Barbiturate use in conjunction with alcohol can result in severe respiratory depression and overdose deaths. The mechanisms underlying the additive/synergistic actions were unresolved. Current management of ethanol-barbiturate-induced apnea is limited to ventilatory and circulatory support coupled with drug elimination. Based on recent preclinical and clinical studies of opiate-induced respiratory depression, we hypothesized that ampakine compounds may provide a treatment for other types of drug-induced respiratory depression. The actions of alcohol, pentobarbital, bicuculline, and the ampakine CX717, alone and in combination, were measured via 1) ventral root recordings from newborn rat brain stem-spinal cord preparations and 2) plethysmographic recordings from unrestrained newborn and adult rats. We found that ethanol caused a modest suppression of respiratory drive in vitro (50 mM) and in vivo (2 g/kg ip). Pentobarbital induced an ∼50% reduction in respiratory frequency in vitro (50 μM) and in vivo (28 mg/kg for pups and 56 mg/kg for adult rats ip). However, severe life-threatening apnea was induced by the combination of the agents in vitro and in vivo via activation of GABAA receptors, which was exacerbated by hypoxic (8% O2) conditions. Administration of the ampakine CX717 alleviated a significant component of the respiratory depression in vitro (50–150 μM) and in vivo (30 mg/kg ip). Bicuculline also alleviated ethanol-/pentobarbital-induced respiratory depression but caused seizure activity, whereas CX717 did not. These data demonstrated that ethanol and pentobarbital together caused severe respiratory depression, including lethal apnea, via synergistic actions that blunt chemoreceptive responses to hypoxia and hypercapnia and suppress central respiratory rhythmogenesis. The ampakine CX717 markedly reduced the severity of respiratory depression.


2012 ◽  
Vol 113 (1) ◽  
pp. 167-174 ◽  
Author(s):  
C. Barton Gillombardo ◽  
Motoo Yamauchi ◽  
Mark D. Adams ◽  
Jesse Dostal ◽  
Sam Chai ◽  
...  

Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1A/J/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1A/J/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Alfredo J Garcia ◽  
Atsushi Doi ◽  
Tatiana Malashchenko ◽  
Aguan Wei ◽  
Ganesh Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document