genome association
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 37)

H-INDEX

54
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 17
Author(s):  
Andre C. Araujo ◽  
Paulo L. S. Carneiro ◽  
Amanda B. Alvarenga ◽  
Hinayah R. Oliveira ◽  
Stephen P. Miller ◽  
...  

Behavior is a complex trait and, therefore, understanding its genetic architecture is paramount for the development of effective breeding strategies. The objective of this study was to perform traditional and weighted single-step genome-wide association studies (ssGWAS and WssGWAS, respectively) for yearling temperament (YT) in North American Angus cattle using haplotypes. Approximately 266 K YT records and 70 K animals genotyped using a 50 K single nucleotide polymorphism (SNP) panel were used. Linkage disequilibrium thresholds (LD) of 0.15, 0.50, and 0.80 were used to create the haploblocks, and the inclusion of non-LD-clustered SNPs (NCSNP) with the haplotypes in the genomic models was also evaluated. WssGWAS did not perform better than ssGWAS. Cattle YT was found to be a highly polygenic trait, with genes and QTL broadly distributed across the whole genome. Association studies using LD-based haplotypes should include NCSNPs and different LD thresholds to increase the likelihood of finding the relevant genomic regions affecting the trait of interest. The main candidate genes identified, i.e., ATXN10, ADAM10, VAX2, ATP6V1B1, CRISPLD1, CAPRIN1, FA2H, SPEF2, PLXNA1, and CACNA2D3, are involved in important biological processes and metabolic pathways related to behavioral traits, social interactions, and aggressiveness in cattle. Future studies should further investigate the role of these genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Venceslas Douillard ◽  
Erick C. Castelli ◽  
Steven J. Mack ◽  
Jill A. Hollenbach ◽  
Pierre-Antoine Gourraud ◽  
...  

The current SARS-CoV-2 pandemic era launched an immediate and broad response of the research community with studies both about the virus and host genetics. Research in genetics investigated HLA association with COVID-19 based on in silico, population, and individual data. However, they were conducted with variable scale and success; convincing results were mostly obtained with broader whole-genome association studies. Here, we propose a technical review of HLA analysis, including basic HLA knowledge as well as available tools and advice. We notably describe recent algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data, respectively, which opens the possibility to investigate HLA from large datasets without a specific initial focus on this region. We thus hope this overview will empower geneticists who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the Covid-19|HLA & Immunogenetics Consortium.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohsen Yoosefzadeh-Najafabadi ◽  
Sepideh Torabi ◽  
Dan Tulpan ◽  
Istvan Rajcan ◽  
Milad Eskandari

In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant phenomics and genomics approaches for generating reliable large datasets. However, selecting an appropriate data integration and analysis method to improve the efficiency of phenome-phenome and phenome-genome association studies is still a bottleneck. This study proposes a hyperspectral wide association study (HypWAS) approach as a phenome-phenome association analysis through a hierarchical data integration strategy to estimate the prediction power of hyperspectral reflectance bands in predicting soybean seed yield. Using HypWAS, five important hyperspectral reflectance bands in visible, red-edge, and near-infrared regions were identified significantly associated with seed yield. The phenome-genome association analysis of each tested hyperspectral reflectance band was performed using two conventional genome-wide association studies (GWAS) methods and a machine learning mediated GWAS based on the support vector regression (SVR) method. Using SVR-mediated GWAS, more relevant QTL with the physiological background of the tested hyperspectral reflectance bands were detected, supported by the functional annotation of candidate gene analyses. The results of this study have indicated the advantages of using hierarchical data integration strategy and advanced mathematical methods coupled with phenome-phenome and phenome-genome association analyses for a better understanding of the biology and genetic backgrounds of hyperspectral reflectance bands affecting soybean yield formation. The identified yield-related hyperspectral reflectance bands using HypWAS can be used as indirect selection criteria for selecting superior genotypes with improved yield genetic gains in large breeding populations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pradeep Ruperao ◽  
Nepolean Thirunavukkarasu ◽  
Prasad Gandham ◽  
Sivasubramani Selvanayagam ◽  
Mahalingam Govindaraj ◽  
...  

Sorghum (Sorghum bicolor L.) is a staple food crops in the arid and rainfed production ecologies. Sorghum plays a critical role in resilient farming and is projected as a smart crop to overcome the food and nutritional insecurity in the developing world. The development and characterisation of the sorghum pan-genome will provide insight into genome diversity and functionality, supporting sorghum improvement. We built a sorghum pan-genome using reference genomes as well as 354 genetically diverse sorghum accessions belonging to different races. We explored the structural and functional characteristics of the pan-genome and explain its utility in supporting genetic gain. The newly-developed pan-genome has a total of 35,719 genes, a core genome of 16,821 genes and an average of 32,795 genes in each cultivar. The variable genes are enriched with environment responsive genes and classify the sorghum accessions according to their race. We show that 53% of genes display presence-absence variation, and some of these variable genes are predicted to be functionally associated with drought adaptation traits. Using more than two million SNPs from the pan-genome, association analysis identified 398 SNPs significantly associated with important agronomic traits, of which, 92 were in genes. Drought gene expression analysis identified 1,788 genes that are functionally linked to different conditions, of which 79 were absent from the reference genome assembly. This study provides comprehensive genomic diversity resources in sorghum which can be used in genome assisted crop improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brandon N. S. Ooi ◽  
Raechell ◽  
Ariel F. Ying ◽  
Yong Zher Koh ◽  
Yu Jin ◽  
...  

Background:Statins can cause muscle symptoms resulting in poor adherence to therapy and increased cardiovascular risk. We hypothesize that combinations of potentially functional SNPs (pfSNPs), rather than individual SNPs, better predict myalgia in patients on atorvastatin. This study assesses the value of potentially functional single nucleotide polymorphisms (pfSNPs) and employs six machine learning algorithms to identify the combination of SNPs that best predict myalgia.Methods: Whole genome sequencing of 183 Chinese, Malay and Indian patients from Singapore was conducted to identify genetic variants associated with atorvastatin induced myalgia. To adjust for confounding factors, demographic and clinical characteristics were also examined for their association with myalgia. The top factor, sex, was then used as a covariate in the whole genome association analyses. Variants that were highly associated with myalgia from this and previous studies were extracted, assessed for potential functionality (pfSNPs) and incorporated into six machine learning models. Predictive performance of a combination of different models and inputs were compared using the average cross validation area under ROC curve (AUC). The minimum combination of SNPs to achieve maximum sensitivity and specificity as determined by AUC, that predict atorvastatin-induced myalgia in most, if not all the six machine learning models was determined.Results: Through whole genome association analyses using sex as a covariate, a larger proportion of pfSNPs compared to non-pf SNPs were found to be highly associated with myalgia. Although none of the individual SNPs achieved genome wide significance in univariate analyses, machine learning models identified a combination of 15 SNPs that predict myalgia with good predictive performance (AUC >0.9). SNPs within genes identified in this study significantly outperformed SNPs within genes previously reported to be associated with myalgia. pfSNPs were found to be more robust in predicting myalgia, outperforming non-pf SNPs in the majority of machine learning models tested.Conclusion: Combinations of pfSNPs that were consistently identified by different machine learning models to have high predictive performance have good potential to be clinically useful for predicting atorvastatin-induced myalgia once validated against an independent cohort of patients.


2021 ◽  
Vol 22 (5) ◽  
pp. 2252
Author(s):  
Shang-Hung Chen ◽  
Sheng-Yen Hsiao ◽  
Kwang-Yu Chang ◽  
Jang-Yang Chang

Oral squamous cell carcinoma (SCC) is a prevalent malignant disease worldwide, especially so in Taiwan. Early- or even preclinical-stage detection is critical for reducing morbidity and mortality from oral SCC. Epidemiological and genome association studies are useful for identifying clinicopathological risk factors for preventive, diagnostic, and therapeutic approaches of oral SCC. For advanced oral SCC, effective treatments are critical to prolonging survival and enhancing quality of life. As oral SCC is characteristic of regional invasion with lymph node metastases, understanding the aggressive features of oral SCC, particularly in lymphangiogenesis, is essential for determining effective treatments. Emerging evidence has demonstrated that the tumor microenvironment (TME) plays a pivotal role in tumor growth, invasion, and metastases. Recent clinical successes in immune checkpoint inhibitors either alone or combined with chemotherapy have also supported the therapeutic value of immunotherapy in oral SCC. This review summarizes critical advances in basic knowledge of oral SCC from the perspective of clinicopathological risk factors, molecular tumorigenesis, and the TME. We also highlight our recent investigations on the microbiome, genome association studies, lymphangiogenesis, and immunomodulation in oral SCC. This review may provide new insights for oral SCC treatment by systematically interpreting emerging evidence from various preclinical and clinical studies.


2021 ◽  
Author(s):  
Pradeep Ruperao ◽  
Nepolean Thirunavukkarasu ◽  
Prasad Gandham ◽  
Sivasubramani S. ◽  
Govindaraj M ◽  
...  

AbstractSorghum (Sorghum bicolor L.) is one of the most important food crops in the arid and rainfed production ecologies. It is a part of resilient farming and is projected as a smart crop to overcome the food and nutritional challenges in the developing world. The development and characterisation of the sorghum pan-genome will provide insight into genome diversity and functionality, supporting sorghum improvement. We built a sorghum pan-genome using reference genomes as well as 354 genetically diverse sorghum accessions belonging to different races. We explored the structural and functional characteristics of the pan-genome and explain its utility in supporting genetic gain. The newly-developed pan-genome has a total of 35,719 genes, a core genome of 16,821 genes and an average of 32,795 genes in each cultivar. The variable genes are enriched with environment responsive genes and classify the sorghum accessions according to their race. We show that 53% of genes display presence-absence variation, and some of these variable genes are predicted to be functionally associated with drought traits. Using more than two million SNPs from the pan-genome, association analysis identified 398 SNPs significantly associated with important agronomic traits, of which, 92 were in genes. Drought gene expression analysis identified 1,788 genes that are functionally linked to different conditions, of which 79 were absent from the reference genome assembly. This study provides comprehensive genomic diversity resources in sorghum which can be used in genome assisted crop improvement.


2021 ◽  
Vol 11 ◽  
Author(s):  
Nana Vagndorf Nordestgaard ◽  
Tine Thach ◽  
Pernille Sarup ◽  
Julian Rodriguez-Algaba ◽  
Jeppe Reitan Andersen ◽  
...  

Wheat (Triticum aestivum L.) is one of the world’s staple food crops and one of the most devastating foliar diseases attacking wheat is powdery mildew (PM). In Denmark only a few specific fungicides are available for controlling PM and the use of resistant cultivars is often recommended. In this study, two Chinese wheat landraces and two synthetic hexaploid wheat lines were used as donors for creating four multi-parental populations with a total of 717 individual lines to identify new PM resistance genetic variants. These lines and the nine parental lines (including the elite cultivars used to create the populations) were genotyped using a 20 K Illumina SNP chip, which resulted in 8,902 segregating single nucleotide polymorphisms for assessment of the population structure and whole genome association study. The largest genetic difference among the lines was between the donors and the elite cultivars, the second largest genetic difference was between the different donors; a difference that was also reflected in differences between the four multi-parental populations. The 726 lines were phenotyped for PM resistance in 2017 and 2018. A high PM disease pressure was observed in both seasons, with severities ranging from 0 to >50%. Whole genome association studies for genetic variation in PM resistance in the populations revealed significant markers mapped to either chromosome 2A, B, or D in each of the four populations. However, linkage disequilibrium between these putative quantitative trait loci (QTL) were all above 0.80, probably representing a single QTL. A combined analysis of all the populations confirmed this result and the most associated marker explained 42% of the variation in PM resistance. This study gives both knowledge about the resistance as well as molecular tools and plant material that can be utilised in marker-assisted selection. Additionally, the four populations produced in this study are highly suitable for association studies of other traits than PM resistance.


Sign in / Sign up

Export Citation Format

Share Document