pseudosubstrate inhibitors
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2008 ◽  
Vol 413 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Bastian Zimmermann ◽  
Sonja Schweinsberg ◽  
Stephan Drewianka ◽  
Friedrich W. Herberg

Conformational control of protein kinases is an important way of modulating catalytic activity. Crystal structures of the C (catalytic) subunit of PKA (protein kinase A) in complex with physiological inhibitors and/or nucleotides suggest a highly dynamic process switching between open and more closed conformations. To investigate the underlying molecular mechanisms, SPR (surface plasmon resonance) was used for detailed binding analyses of two physiological PKA inhibitors, PKI (heat-stable protein kinase inhibitor) and a truncated form of the R (regulatory) subunit (RIα 92–260), in the presence of various concentrations of metals and nucleotides. Interestingly, it could be demonstrated that high-affinity binding of each pseudosubstrate inhibitor was dependent only on the concentration of divalent metal ions. At low micromolar concentrations of Mg2+ with PKI, transient interaction kinetics with fast on- and off-rates were observed, whereas at high Mg2+ concentrations the off-rate was slowed down by a factor of 200. This effect could be attributed to the second, low-affinity metal-binding site in the C subunit. In contrast, when investigating the interaction of RIα 92–260 with the C subunit under the same conditions, it was shown that the association rate rather than the dissociation rate was influenced by the presence of high concentrations of Mg2+. A model is presented, where the high-affinity interaction of the C subunit with pseudosubstrate inhibitors (RIα and PKI) is dependent on the closed, catalytically inactive conformation induced by the binding of a nucleotide complex where both of the metal-binding sites are occupied.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3270-3276 ◽  
Author(s):  
Ronald R. Bach ◽  
Charles F. Moldow

AbstractTissue factor (TF ) procoagulant activity (PCA) on the surface of intact HL-60 cells is encrypted. This latent TF PCA was activated by exposing the cells to ionomycin, a calcium ionophore. Within seconds an increase in TF PCA of greater than 100-fold was observed. The ionomycin effect was blocked by pretreating the cells with calmidazolium, a calmodulin inhibitor. Changes in TF structure and function, coincident with the ionophore-induced increase in TF PCA, were identified. TF-factor VIIa complexes formed on both untreated and ionophore-treated cells, but pseudosubstrate inhibitors only bound to TF-factor VIIa on the ionophore-treated cells. TF PCA was inhibited by reacting cells with sulfosuccinimidyl-6-(biotinamido)hexanoate, and the rate of this reaction increased twofold after cells were exposed to ionomycin. When proteins on the surface of untreated cells, expressing minimal TF PCA, were cross-linked with 3-3′-dithiobis(sulfosuccinimidylpropionate), cross-linked TF dimers were produced. TF cross-linking was prevented by first treating the cells with ionomycin. These results suggest a mechanism for the ionomycin-induced increase in TF PCA. TF activation appears to be a calmodulin-dependent process, which exposes an essential macromolecular substrate binding site on TF, possibly as the result of a change in TF quaternary structure.


Sign in / Sign up

Export Citation Format

Share Document