kováts retention indices
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 65 (4) ◽  
Author(s):  
Ivana Čabarkapa ◽  
Milica Aćimović ◽  
Lato Pezo ◽  
Vanja Tadić

Abstract. This work aimed to obtain a validated model for the prediction of retention times of compounds isolated from Origanum heracleoticum, Origanum vulgare, Thymus vulgaris, and Thymus serpyllum essential oils. In total 68 experimentally obtained retention times of compounds, which were separated and detected by GC-MS were further used to build the prediction models. The quantitative structure–retention relationship was employed to foresee the Kovats retention indices of compounds acquired by GC-MS analysis, using eight molecular descriptors selected by a genetic algorithm. The chosen descriptors were used as inputs for the four artificial neural networks, to construct a Kovats retention indices predictive quantitative structure–retention relationship model. The coefficients of determination in the training cycle were 0.830; 0.852; 0.922 and 0.815 (for compounds found in O. heracleoticum, O. vulgare, T. vulgaris and T. serpyllum essential oils, respectively), demonstrating that these models could be used for prediction of Kovats retention indices, due to low prediction error and high r2.   Resumen. El objetivo de este trabajo es la obtención de modelos validados para la predicción del tiempo de retención de los compuestos aislados de aceites esenciales de Origanum heracleoticum, Origanum vulgare, Thymus vulgaris y Thymus serpyllum. Se han obtenido un total de 68 tiempos de retención de compuestos, separándose y detectándose por cromatografía de gases con detección por espectrometría de masas (GC-MS) con posterior desarrollo de modelos de predicción.  La relación cuantitativa estructura-retención ha sido utilizada para predecir el índice de retención Kovats de los compuestos obtenidos por análisis de GC-MS, utilizando ocho descriptores moleculares seleccionados mediante algoritmo genético. Los descriptores seleccionados han sido utilizados como entrada para las cuatro redes neuronales artificiales y así elaborar los índices predictivos del modelo de relación cuantitativa estructura-retención.  Los coeficientes de determinación en el ciclo de entrenamiento fueron de 0.830; 0.852; 0.922 y 0.815 (para los compuestos identificados en los aceites esenciales del O. heracleoticum, O. vulgare, T. vulgaris y T. serpyllum respectivamente) demostrando así que estos modelos son útiles en la predicción de los índices de retención de Kovats con un error de bajo predicción y alta r2.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248961
Author(s):  
Stuart McLean ◽  
David S. Nichols ◽  
Noel W. Davies

The red fox is a highly adaptable mammal that has established itself world-wide in many different environments. Contributing to its success is a social structure based on chemical signalling between individuals. Urine scent marking behaviour has long been known in foxes, but there has not been a recent study of the chemical composition of fox urine. We have used solid-phase microextraction and gas chromatography-mass spectrometry to analyze the urinary volatiles in 15 free-ranging wild foxes (2 female) living in farmlands and bush in Victoria, Australia. Foxes here are routinely culled as feral pests, and the urine was collected by bladder puncture soon after death. Compounds were identified from their mass spectra and Kovats retention indices. There were 53 possible endogenous scent compounds, 10 plant-derived compounds and 5 anthropogenic xenobiotics. Among the plant chemicals were several aromatic apocarotenoids previously found in greater abundance in the fox tail gland. They reflect the dietary consumption of carotenoids, essential for optimal health. One third of all the endogenous volatiles were sulfur compounds, a highly odiferous group which included thiols, methylsulfides and polysulfides. Five of the sulfur compounds (3-isopentenyl thiol, 1- and 2-phenylethyl methyl sulfide, octanethiol and benzyl methyl sulfide) have only been found in foxes, and four others (isopentyl methyl sulfide, 3-isopentenyl methyl sulfide, and 1- and 2-phenylethane thiol) only in some canid, mink and skunk species. This indicates that they are not normal mammalian metabolites and have evolved to serve a specific role. This role is for defence in musteloids and most likely for chemical communication in canids. The total production of sulfur compounds varied greatly between foxes (median 1.2, range 0.4–32.3 μg ‘acetophenone equivalents’/mg creatinine) as did the relative abundance of different chemical types. The urinary scent chemistry may represent a highly evolved system of semiochemicals for communication between foxes.


2021 ◽  
pp. 462100
Author(s):  
Chen Qu ◽  
Barry I. Schneider ◽  
Anthony J. Kearsley ◽  
Walid Keyrouz ◽  
Thomas C. Allison

2016 ◽  
Vol 79 (15-16) ◽  
pp. 1023-1032 ◽  
Author(s):  
Imen Touhami ◽  
Hamza Haddag ◽  
Mabrouka Didi ◽  
Djelloul Messadi

2011 ◽  
Vol 65 (2) ◽  
Author(s):  
Patryk Bielecki ◽  
Wiesław Wasiak

AbstractThe quantitative structure-retention relationship (QSRR) was used to predict Kováts retention indices of forty-three volatile olefins on the chemically bonded stationary phase, containing 1,4,8,11-tetraazacycloteradecane (cyclam) complexes of copper(II) chloride. Retention indices were correlated with eleven descriptors derived from structures of olefins optimised using the molecular mechanics force field calculations (MM2). Descriptors were generated with the use of quantitative structure-activity relationships (QSAR), semi-empirical Austin Model 1 methods (AM1), and obtained from physicochemical databases. Five well-correlated models were built, with predictive coefficients of determination (R 2) values of 0.993 and 0.995. The dielectric energy (DE) descriptor was identified as being as important as the polarizability (P) descriptor in the process of separation of unsaturated olefins on stationary phases containing metal complexes. The DE index proved to be decisive in distinguishing between the geometric cis and trans isomers of the tested compounds.


Sign in / Sign up

Export Citation Format

Share Document