elasticity system
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 2)

SeMA Journal ◽  
2021 ◽  
Author(s):  
Juan A. Barceló ◽  
Carlos Castro

AbstractWe propose a numerical method to approximate the scattering amplitudes for the elasticity system with a non-constant matrix potential in dimensions $$d=2$$ d = 2 and 3. This requires to approximate first the scattering field, for some incident waves, which can be written as the solution of a suitable Lippmann-Schwinger equation. In this work we adapt the method introduced by Vainikko (Res Rep A 387:3–18, 1997) to solve such equations when considering the Lamé operator. Convergence is proved for sufficiently smooth potentials. Implementation details and numerical examples are also given.


2021 ◽  
Vol 66 (3) ◽  
pp. 537-551
Author(s):  
Zoubai Fayrouz ◽  
Merouani Boubakeur

"In this paper, we consider a mixed problem for a nonlinear elasticity system with laws of general behavior. The coefficients of elasticity depends on x meanwhile the density of the volumetric forces depends on the displacement. The main aim of this paper is to apply the Schauder's fixed point theorem and the techniques of topological degree to prove a theorem of the existence and the uniqueness of the solution of the corresponding variational problem."


2021 ◽  
Vol 33 (4) ◽  
pp. 833-842
Author(s):  
Ren Fukui ◽  
Yasuhito Kusakabe ◽  
Ryojun Ikeura ◽  
Soichiro Hayakawa ◽  
◽  
...  

Human-machine cooperative robots are required to drive their arms with low impedance and high torque. As a compact mechanism that generates a large torque and has low impedance characteristics, the series elastic drive system, in which an elastic element is inserted between the motor and driving unit, has been proposed. In this paper, we propose a method of applying impedance control to a series elasticity system with a torque-compensating motor that uses a torsion bar as an elastic body that enables its use under high loads. The stability of the system was verified via simulation and experiment by considering the allowable speed and maximum torque of the motor. The experimental results from the conventional system and the proposed system were compared. The proposed system was confirmed to be superior to the conventional system in terms of both stability and tracking performance. Consequently, the effectiveness of our proposed system was confirmed.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yassine Letoufa ◽  
Salah Mahmoud Boulaaras ◽  
Hamid Benseridi ◽  
Mourad Dilmi ◽  
Asma Alharbi

We study the asymptotic behavior of solutions of the anisotropic heterogeneous linearized elasticity system in thin domain of ℝ 3 which has a fixed cross-section in the ℝ 2 plane with Tresca friction condition. The novelty here is that stress tensor has given by the most general form of Hooke’s law for anisotropic materials. We prove the convergence theorems for the transition 3D-2D when one dimension of the domain tends to zero. The necessary mathematical framework and (2D) equation model with a specific weak form of the Reynolds equation are determined. Finally, the properties of solution of the limit problem are given, in which it is confirmed that the limit problem is well defined.


Author(s):  
Yasir Nadeem ◽  
Akhtar Ali

This paper aims to give a mathematically rigorous description of the corner singularities of the weak solutions for the plane linearized elasticity system in a bounded planar domain with angular corner points on the boundary. The qualitative properties of the solution including its regularity depend crucially on these corner points or such types of boundary conditions. In particular, the resulting expansion of the solutions of the underlying problem involves singular vector functions, inlines, depending on a certain parameter ξ


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2241
Author(s):  
Hovik A. Matevossian

We study properties of generalized solutions of the Dirichlet–Robin problem for an elasticity system in the exterior of a compact, as well as the asymptotic behavior of solutions of this mixed problem at infinity, with the condition that the energy integral with the weight |x|a is finite. Depending on the value of the parameter a, we have proved uniqueness (or non-uniqueness) theorems for the mixed Dirichlet–Robin problem, and also given exact formulas for the dimension of the space of solutions. The main method for studying the problem under consideration is the variational principle, which assumes the minimization of the corresponding functional in the class of admissible functions.


2019 ◽  
Vol 24 (2) ◽  
pp. 58
Author(s):  
Hovik A. Matevossian

We study the properties of solutions of the mixed Dirichlet–Robin and Neumann–Robin problems for the linear system of elasticity theory in the exterior of a compact set and the asymptotic behavior of solutions of these problems at infinity under the assumption that the energy integral with weight | x | a is finite for such solutions. We use the variational principle and depending on the value of the parameter a, obtain uniqueness (non-uniqueness) theorems of the mixed problems or present exact formulas for the dimension of the space of solutions.


Sign in / Sign up

Export Citation Format

Share Document