sloping aquifer
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Shikha Saxena ◽  
Rajeev Kumar Bansal ◽  
Basant Singh

Numerical modeling for the variations of water table fluctuation in response to subsurface seepage and downwards recharge is an important aspect in the estimation of surface-groundwater interaction. In this work, a numerical model is developed for the approximation of water table variation in an unconfined sloping aquifer subjected to the multiple localized recharge and seepage from the adjacent water body. The Boussinesq equation characterizing the flow of groundwater in unconfined sloping porous media is solved numerically using Du Fort Frankel finite difference method. The application of the result is demonstrated with illustrative examples using varying aquifer parameters. The results indicated that the water table form groundwater mound beneath recharge basins due to continuous recharge.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 287
Author(s):  
Ming-Chang Wu ◽  
Ping-Cheng Hsieh

The objective of this study was to develop a complete analytical solution to determining the effect of any varying rainfall recharge rates on groundwater flow in an unconfined sloping aquifer. The domain of the unconfined aquifer was assumed to be semi-infinite with an impervious bottom base, and the initial water level was parallel to the impervious bottom of a mild slope. In the past, similar problems have been discussed mostly by considering a uniform or temporally varying recharge rate, but the current study explored the variation of groundwater flow under temporally and spatially distributed recharge rates. The presented analytical solution was verified by comparing its results with those of previous research, and the practicability of the analytical solution was validated using the 2012 and 2013 data of a groundwater station in Dali District of Taichung City, Taiwan.


2019 ◽  
Vol 33 (8) ◽  
pp. 2827-2845 ◽  
Author(s):  
Tinesh Pathania ◽  
Andrea Bottacin-Busolin ◽  
A. K. Rastogi ◽  
T. I. Eldho

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 826 ◽  
Author(s):  
Wu ◽  
Hsieh

Sloping unconfined aquifers are commonly seen and well investigated in the literature. In this study, we propose a generalized integral transformation method to solve the linearized Boussinesq equation that governs the groundwater level in a sloping unconfined aquifer with an impermeable bottom. The groundwater level responses of this unconfined aquifer under temporally uniform recharge or nonuniform recharge events are discussed. After comparing with a numerical solution to the nonlinear Boussinesq equation, the proposed solution appears better than that proposed in a previous study. Besides, we found that the proposed solutions reached the convergence criterion much faster than the Laplace transform solution did. Moreover, the application of the proposed solution to temporally changing rainfall recharge is also proposed to improve on the previous quasi-steady state treatment of an unsteady recharge rate.


Sign in / Sign up

Export Citation Format

Share Document