scholarly journals Oxidoborates Templated by Cationic Nickel(II) Complexes and Self-Assembled from B(OH)3

Inorganics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 68
Author(s):  
Mohammed Altahan ◽  
Michael Beckett ◽  
Simon Coles ◽  
Peter Horton

Several oxidoborates, self-assembled from B(OH)3 and templated by cationic Ni(II) coordination compounds, were synthesized by crystallization from aqueous solution. These include the ionic compounds trans-[Ni(NH3)4(H2O)2][B4O5(OH)4].H2O (1), s-[Ni(dien)2][B5O6(OH)4]2 (dien = N-(2-aminoethyl)-1,2-ethanediamine (2), trans-[Ni(dmen)2(H2O)2] [B5O6(OH)4]2.2H2O (dmen = N,N-dimethyl-1,2-diaminoethane) (3), [Ni(HEen)2][B5O6(OH)4]2 (HEen = N-(2-hydroxyethyl)-1,2-diaminoethane) (4), [Ni(AEN)][B5O6(OH)4].H2O (AEN = 1-(3-azapropyl) -2,4-dimethyl-1,5,8-triazaocta-2,4-dienato(1-)) (5), trans-[Ni(dach)2(H2O)2][Ni(dach)2] [B7O9(OH)5]2.4H2O (dach = 1,2-diaminocyclohexane) (6), and the neutral species trans-[Ni(en)(H2O)2{B6O7(OH)6}].H2O (7) (en = 1,2-diaminoethane), and [Ni(dmen)(H2O){B6O7(OH)6}].5H2O (8). Compounds 1–8 were characterized by single-crystal XRD studies and by IR spectroscopy and 2, 4–7 were also characterized by thermal (TGA/DSC) methods and powder XDR studies. The solid-state structures of all compounds show extensive stabilizing H-bond interactions, important for their formation, and also display a range of gross structural features: 1 has an insular tetraborate(2-) anion, 2–5 have insular pentaborate(1-) anions, 6 has an insular heptaborate(2-) anion (‘O+’ isomer), whilst 7 and 8 have hexaborate(2-) anions directly coordinated to their Ni(II) centers, as bidentate or tridentate ligands, respectively. The Ni(II) centers are either octahedral (1–4, 7, 8) or square-planar (5), and compound 6 has both octahedral and square-planar metal geometries present within the structure as a double salt. Magnetic susceptibility measurements were undertaken on all compounds.

2018 ◽  
Vol 47 (46) ◽  
pp. 16674-16683 ◽  
Author(s):  
Tiago A. Fernandes ◽  
Marina V. Kirillova ◽  
Vânia André ◽  
Alexander M. Kirillov

Two new copper(ii) coordination compounds were self-assembled from N-methyldiethanolamine and pyromellitic acid as principal building blocks; their structural and catalytic features were investigated.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3358
Author(s):  
Sadaf Rauf ◽  
Agata Trzesowska-Kruszynska ◽  
Tomasz Sierański ◽  
Marcin Świątkowski

Three new copper coordination compounds derived from 2,2-bis(hydroxymethyl)propionic acid (dmpa) and hexamethylenetetramine (hmta) were obtained and their crystal structures were determined. The stoichiometry of the reagents applied in the syntheses reflects the metal to ligand molar ratio in the formed solid products. Due to the multiple coordination modes of the used ligands, wide structural diversity was achieved among synthesized compounds, i.e., mononuclear [Cu(dmp)2(hmta)2(H2O)] (1), dinuclear [Cu2(dmp)4(hmta)2] (2), and 1D coordination polymer [Cu2(dmp)4(hmta)]n (3). Their supramolecular structures are governed by O—H•••O and O—H•••N hydrogen bonds. The compounds were characterized in terms of absorption (UV-Vis and IR) and thermal properties. The relationships between structural features and properties were discussed in detail. Owing to discrepancies in the coordination mode of a dmp ligand, bidentate chelating in 1, and bidentate bridging in 2 and 3, there is a noticeable change in the position of the bands corresponding to the stretching vibrations of the carboxylate group in the IR spectra. The differences in the structures of the compounds are also reflected in the nature and position of the UV-Vis absorption maxima, which are located at lower wavelengths for 1.


2020 ◽  
Vol 49 (21) ◽  
pp. 7197-7209 ◽  
Author(s):  
Jin-Zhong Gu ◽  
Shi-Mao Wan ◽  
Marina V. Kirillova ◽  
Alexander M. Kirillov

2,5-Di(4-carboxylphenyl)nicotinic acid was explored as a novel building block for assembling nine metal(ii) coordination compounds; these were fully characterized and their structural features and functional properties were investigated.


2001 ◽  
Vol 56 (12) ◽  
pp. 1340-1343 ◽  
Author(s):  
Mathias S. Wickleder ◽  
Oliver Büchner

AbstractThe evaporation of a solution of Au(OH)3 and Na2So4 in conc. sulfuric acid led to yellow single crystals of NaAu(SO4)2 (monoclinic, P21/n, Z = 2, a = 469.1, b = 845.9, c = 831.2 pm, β = 95.7°). Analogous procedures with K2SO4 or Rb2SO4 instead of Na2SO4 yielded single crystals of KAu(SO4)2 (monoclinic, C2/c, Z = 4, a = 1109.8, b = 724.2, c = 941.1 pm, β = 118.4°) and RbAu(S04)2, respectively, (triclinic, P1̄, Z = 1, a = 423.6, b = 497.5, c = 889.0 pm, a = 76.4°, β = 88.4°, γ = 73.5°). Although the crystal structures of the three sulfates are not isotypic they show similar structural features: The gold atoms are coordinated by four oxygen atoms in a square planar manner. These oxygen atoms belong to four SO42- ions which link the [AUO4] units to infinite chains according to 1∞[Au(SO4)4/ 2]- . These chains are connected via the monovalent cations which show coordination numbers of 6 (Na+), 10 (K+) and 12 (Rb+), respectively.


Materials ◽  
2014 ◽  
Vol 7 (1) ◽  
pp. 287-301 ◽  
Author(s):  
Christophe Desmarets ◽  
Thierry Ducarre ◽  
Marie Rager ◽  
Geoffrey Gontard ◽  
Hani Amouri

INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 22-31
Author(s):  
Seema Gautam ◽  
Sulekh Chandra ◽  
Jugmendra Singh ◽  
Navneet Manav ◽  
Vinod K Paliwal ◽  
...  

Structure and biological application based analysis has been carried out for Schiff’s base ligand containing nitrogen and sulphur donor atoms and also for a series of its coordination compounds. Ligand benzil-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L) has been prepared and structural features of ligand investigated by elemental analyses, IR, 1 H-NMR, mass spectra and molecular modeling studies. The chemical reaction of the prepared ligand with metal ions afforded mononuclear coordination compounds of Mn(II) and Co(II) metal ions. The characterization of the coordination compounds is being based on the techniques i.e. elemental analysis, infra-red, UV-visible as well as melting point, molar conductivity and magnetic moment measurement. A computational study has been done to understand the miscellaneous coordination modes of ligand to metal ions. Characterization result shows that coordination compounds exhibit a six coordinated geometrical arrangement i.e. octahedral geometry. The biological inhibition zone (antifungal and antibacterial activities) of synthesized compounds, i.e. ligand and its coordination compounds, has been monitored using well diffusion technique


1983 ◽  
Vol 36 (7) ◽  
pp. 1341 ◽  
Author(s):  
KR Morgan ◽  
GJ Gainsford ◽  
NF Curtis

Reduction of 4,4,12,12-tetramethyl-5,8,11-triazapentadecane-2,14-dione diperchlorate by sodium borohydride yields as the major product one isomer of 4,4-dimethyl-7-(5,5,7-trimethyl-1,2-diazepam 1-yl)-5-azaheptan-2-ol, pyaz. The coordination compounds [M(pyaz)] (ClO4), and [Ni(pyaz)(NCS)] CNS (M = NiII, CuII) were prepared, the latter being assigned five-coordinate structures. The structure of singlet ground state [Ni(pyaz)] (ClO4)2 was determined by X-ray diffraction [space group P212121, Z 4, a 1450.8(2), b 1522.2(1), c 1048.5(1) pm, R 0.0675, Rw 0.0768 for 2461 reflections]. The compound has a square-planar coordination arrangement, with the three nitrogen and the oxygen donor atoms of the pyaz ligand approximately coplanar [Ni-O 190.0(6) pm; Ni-N 192.8(6), 189.2(6), 189.2(6) pm in sequence N(5) of chain, N(l), N(4) of diazepane]. The diazepane ring adopts a boat conformation. One side of the nickel(II) coordination plane is sterically crowded by the presence of two axial methyl substituents. The ligand has two non-equivalent chiral centres (C(14) of the diazepane ring and C(2) of the amine alcohol chain), both present in the R configuration in the crystal studied. The three nitrogen atoms, which became chiral centres upon coordination, are present in the S configuration for two diazepane nitrogen atoms and in the R configuration for the 5-aza chain nitrogen.


Author(s):  
Tarlok Singh Lobana ◽  
Mani Kaushal ◽  
Robin Bhatia ◽  
Ritu Bala ◽  
Ray J. Butcher ◽  
...  

In this investigation, the crystal structures of the thio-ligands 3-formylpyridine 4-phenylthiosemicarbazone (C13H12N4S, 1) and 4-benzoylpyridine 4-ethylthiosemicarbazone (C15H16N4S, 2), and of two new coordination compounds, chlorido(3-formylpyridine 4-phenylthiosemicarbazone-κS)bis(triphenylphosphane-κP)copper(I) acetonitrile monosolvate, [CuCl(C13H12N4S)(C18H15P)2]·CH3CN, 3, and bis(3-formylpyridine 4-ethylthiosemicarbazonato-κ2 N 1,S)nickel(II), [Ni(C9H11N4S)2], 4, are reported. In complex 3, the thio-ligand coordinates in a neutral form to the Cu atom through its S-donor atom, and in complex 4, the anionic thio-ligand chelates to the Ni atom through N- and S-donor atoms. The geometry of complex 3 is distorted tetrahedral [bond angles 99.70 (5)–123.23 (5)°], with the P—Cu—P bond angle being the largest, while that of complex 4 is square planar, with trans-S—Ni—S and N—Ni—N bond angles of 180°.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 515 ◽  
Author(s):  
David B. Hobart ◽  
Joseph S. Merola ◽  
Hannah M. Rogers ◽  
Sonia Sahgal ◽  
James Mitchell ◽  
...  

Palladium(II) acetate reacts with proline and proline homologs in acetone/water to yield square planar bis-chelated palladium amino acid complexes. These compounds are all catalytically active with respect to oxidative coupling of olefins and phenylboronic acids. Some enantioselectivity is observed and formation of products not reported in other Pd(II) oxidative couplings is seen. The crystal structures of nine catalyst complexes were obtained. Extended lattice structures arise from N-H••O or O••(HOH)••O hydrogen bonding. NMR, HRMS, and single-crystal XRD data obtained on all are evaluated.


Sign in / Sign up

Export Citation Format

Share Document