delay dynamical system
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Xiao Cai ◽  
Oh Min Kwon ◽  
Kaibo Shi ◽  
Kun She ◽  
Kun She ◽  
...  


2021 ◽  
Vol 18 (6) ◽  
pp. 8577-8602
Author(s):  
Leo Turner ◽  
◽  
Andrew Burbanks ◽  
Marianna Cerasuolo

<abstract><p>Prostate cancer is the fifth most common cause of death from cancer, and the second most common diagnosed cancer in men. In the last few years many mathematical models have been proposed to describe the dynamics of prostate cancer under treatment. So far one of the major challenges has been the development of mathematical models that would represent <italic>in vivo</italic> conditions and therefore be suitable for clinical applications, while being mathematically treatable. In this paper, we take a step in this direction, by proposing a nonlinear distributed-delay dynamical system that explores neuroendocrine transdifferentiation in human prostate cancer <italic>in vivo</italic>. Sufficient conditions for the existence and the stability of a tumour-present equilibrium are given, and the occurrence of a Hopf bifurcation is proven for a uniform delay distribution. Numerical simulations are provided to explore differences in behaviour for uniform and exponential delay distributions. The results suggest that the choice of the delay distribution is key in defining the dynamics of the system and in determining the conditions for the onset of oscillations following a switch in the stability of the tumour-present equilibrium.</p></abstract>



Author(s):  
Nian Shao ◽  
Jin Cheng ◽  
Wenbin Chen

AbstractIn this paper, we estimate the reproductive number R0 of COVID-19 based on Wallinga and Lipsitch framework [11] and a novel statistical time delay dynamic system. We use the observed data reported in CCDC’s paper to estimate distribution of the generation interval of the infection and apply the simulation results from the time delay dynamic system as well as released data from CCDC to fit the growth rate. The conclusion is: Based our Fudan-CCDC model, the growth rate r of COVID-19 is almost in [0.30, 0.32] which is larger than the growth rate 0.1 estimated by CCDC [9], and the reproductive number R0 of COVID-19 is estimated by 3.25 ≤ R0 ≤ 3.4 if we simply use R = 1 + r ∗ Tc with Tc = 7.5, which is bigger than that of SARS. Some evolutions and predictions are listed.











2007 ◽  
Vol 17 (10) ◽  
pp. 3455-3460 ◽  
Author(s):  
ARŪNAS TAMAŠEVIČIUS ◽  
TATJANA PYRAGIENĖ ◽  
MANTAS MEŠKAUSKAS

Nonvanishing 𐑍-shaped nonlinear function has been introduced in delay dynamical system instead of commonly used Mackey–Glass type function. Depending on time delay the system exhibits not only mono-scroll, but also more complex two-scroll hyperchaotic attractors. Delay system with the novel nonlinear function can be implemented as an analogue electronic oscillator.



Sign in / Sign up

Export Citation Format

Share Document