concomitant radiotherapy
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 19)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruben A. G. van Eerden ◽  
Leni van Doorn ◽  
Femke M. de Man ◽  
Niels Heersche ◽  
Michail Doukas ◽  
...  

Background: Data from previous work suggests that there is no correlation between systemic (plasma) paclitaxel exposure and efficacy in patients treated for esophageal cancer. In this trial, we investigated ATP-binding cassette efflux transporter expression and intratumoral pharmacokinetics of paclitaxel to identify changes which could be a first sign of chemoresistance.Methods: Patients with esophageal cancer treated with paclitaxel and carboplatin (± concomitant radiotherapy) were included. During the first and last cycle of weekly paclitaxel, blood samples and biopsies of esophageal mucosa and tumor tissue were taken. Changes in paclitaxel exposure and expression of ABCB1 (P-glycoprotein) over time were studied in both tumor tissue and normal appearing esophageal mucosa.Results: ABCB1 was significantly higher expressed in tumor tissue compared to esophageal tissue, during both the first and last cycle of paclitaxel (cycle 1: p < 0.01; cycle 5/6: p = 0.01). Interestingly, ABCB1 expression was significantly higher in adenocarcinoma than in squamous cell carcinoma (p < 0.01). During the first cycle, a trend towards a higher intratumoral paclitaxel concentration was observed compared to the esophageal mucosa concentration (RD:43%; 95%CI: −3% to 111% p = 0.07). Intratumoral and plasma paclitaxel concentrations were significantly correlated during the first cycle (AUC0–48 h: r = 0.72; p < 0.01).Conclusion: Higher ABCB1 expression in tumor tissue, and differences between histological tumor types might partly explain why tumors respond differently to systemic treatment. Resistance by altered intratumoral paclitaxel concentrations could not be demonstrated because the majority of the biopsies taken at the last cycle of paclitaxel did contain a low amount of tumor cells or no tumor.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Hirokazu Ashida ◽  
Takao Igarashi ◽  
Yosuke Nozawa ◽  
Yohei Munetomo ◽  
Takahiro Higuchi ◽  
...  

Abstract Objective To investigate the predictability of ophthalmic artery involvement in maxillary sinus cancer using preprocedural contrast enhanced CT and MRI. Methods We analyzed advanced (T3, T4a, and T4b) primary maxillary sinus squamous cell carcinoma treated with super-selective intra-arterial cisplatin infusion and concomitant radiotherapy (RADPLAT) from Oct 2016 to Mar 2020. Two diagnostic radiologists evaluated the tumor invasion site around the maxillary sinus using preprocedural imaging. These results were compared with the angiographic involvement of the ophthalmic artery using statistical analyses. We also evaluated our RADPLAT quality using complication rate, response to treatment, local progressive free survival (LPFS), and overall survival (OS). Results Twenty patients were included in this study. There were ten cases of ophthalmic artery tumor stain and there was a correlation between ophthalmic artery involvement and invasion for ethmoid sinus with statistically significant differences. Other imaging findings were not associated with ophthalmic artery involvement. Conclusions Ethmoid sinus invasion on preprocedural imaging could suggest ophthalmic artery involvement in maxillary sinus cancer. It may be useful in predicting prognosis and treatment selection.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Clara Le Fèvre ◽  
Xue Cheng ◽  
Marie-Pierre Loit ◽  
Audrey Keller ◽  
Hélène Cebula ◽  
...  

Abstract Background The hippocampus is a critical organ for irradiation. Thus, we explored changes in hippocampal volume according to the dose delivered and the location relative to the glioblastoma. Methods All patients were treated for glioblastoma with surgery, concomitant radiotherapy and temozolomide, and adjuvant temozolomide. Hippocampi were retrospectively delineated on three MRIs, performed at baseline, at the time of relapse, and on the last MRI available at the end of follow-up. A total of 98, 96, and 82 hippocampi were measured in the 49 patients included in the study, respectively. The patients were stratified into three subgroups according to the dose delivered to 40% of the hippocampus. In the group 1 (n = 6), the hippocampal D40% was < 7.4 Gy, in the group 2 (n = 13), only the Hcontra D40% was < 7.4 Gy, and in the group 3 (n = 30), the D40% for both hippocampi was > 7.4 Gy. Results Regardless of the time of measurement, homolateral hippocampal volumes were significantly lower than those contralateral to the tumor. Regardless of the side, the volumes at the last MRI were significantly lower than those measured at baseline. There was a significant correlation among the decrease in hippocampal volume regardless of its side, and Dmax (p = 0.001), D98% (p = 0.028) and D40% (p = 0.0002). After adjustment for the time of MRI, these correlations remained significant. According to the D40% and volume at MRIlast, the hippocampi decreased by 4 mm3/Gy overall. Conclusions There was a significant relationship between the radiotherapy dose and decrease in hippocampal volume. However, at the lowest doses, the hippocampi seem to exhibit an adaptive increase in their volume, which could indicate a plasticity effect. Consequently, shielding at least one hippocampus by delivering the lowest possible dose is recommended so that cognitive function can be preserved. Trial registration Retrospectively registered.


2021 ◽  
Author(s):  
Clara Le Fèvre ◽  
Xue Cheng ◽  
Marie-Pierre Loit ◽  
Audrey Keller ◽  
Hélène Cebula ◽  
...  

Abstract Background The hippocampus is a critical organ for irradiation. Thus, we explored changes in hippocampal volume according to the dose delivered and the location relative to the glioblastoma.Methods All patients were treated for glioblastoma with surgery, concomitant radiotherapy and temozolomide, and adjuvant temozolomide. Hippocampi were retrospectively delineated on three MRIs, performed at baseline, at the time of relapse, and on the last MRI available at the end of follow-up. A total of 98, 96, and 82 hippocampi were measured in the 49 patients included in the study, respectively. The patients were stratified into three subgroups according to the dose delivered to 40% of the hippocampus. In the group 1 (n = 6), the hippocampal D40% was < 7.4 Gy, in the group 2 (n = 13), only the Hcontra D40% was < 7.4 Gy, and in the group 3 (n = 30), the D40% for both hippocampi was > 7.4 Gy.Results Regardless of the time of measurement, homolateral hippocampal volumes were significantly lower than those contralateral to the tumor. Regardless of the side, the volumes at the last MRI were significantly lower than those measured at baseline. There was a significant correlation among the decrease in hippocampal volume regardless of its side, and Dmax (p = 0.001), D98% (p = 0.028) and D40% (p = 0.0002). After adjustment for the time of MRI, these correlations remained significant. According to the D40% and volume at MRIlast, the hippocampi decreased by 4 mm3/Gy overall.Conclusions There was a significant relationship between the radiotherapy dose and decrease in hippocampal volume. However, at the lowest doses, the hippocampi seem to exhibit an adaptive increase in their volume, which could indicate a plasticity effect. Consequently, shielding at least one hippocampus by delivering the lowest possible dose is recommended so that cognitive function can be preserved.Trial registration: Retrospectively registered.


2021 ◽  
Vol 23 (5) ◽  
pp. 913-921 ◽  
Author(s):  
R. Mesia ◽  
L. Iglesias ◽  
J. Lambea ◽  
J. Martínez-Trufero ◽  
A. Soria ◽  
...  

AbstractHead and neck cancers (HNC) are defined as malignant tumours located in the upper aerodigestive tract and represents 5% of oncologic cases in adults in Spain. More than 90% of these tumours have squamous histology. In an effort to incorporate evidence obtained since 2017 publication, the Spanish Society of Medical Oncology (SEOM) presents an update of the squamous cell HNC diagnosis and treatment guideline. Most relevant diagnostic and therapeutic changes from the last guideline have been updated: introduction of sentinel node biopsy in early oral/oropharyngeal cancer treated with surgery, concomitant radiotherapy with weekly cisplatin 40 mg/m2 in the adjuvant setting, new approaches for HPV-related oropharyngeal cancer and new treatments with immune-checkpoint inhibitors in recurrent/metastatic disease.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Catherine E. Vasey ◽  
Robert J. Cavanagh ◽  
Vincenzo Taresco ◽  
Cara Moloney ◽  
Stuart Smith ◽  
...  

Glioblastoma (GBM) is the most common, malignant and aggressive brain tumour in adults. Despite the use of multimodal treatments, involving surgery, followed by concomitant radiotherapy and chemotherapy, the median survival for patients remains less than 15 months from diagnosis. Low penetration of drugs across the blood-brain barrier (BBB) is a dose-limiting factor for systemic GBM therapies, and as a result, post-surgical intracranial drug delivery strategies are being developed to ensure local delivery of drugs within the brain. Here we describe the effects of PEGylated poly(lactide)-poly(carbonate)-doxorubicin (DOX) nanoparticles (NPs) on the metabolic activity of primary cancer cell lines derived from adult patients following neurosurgical resection, and the commercially available GBM cell line, U87. The results showed that non-drug-loaded NPs were well tolerated at concentrations of up to 100 µg/mL while tumour cell-killing effects were observed for the DOX-NPs at the same concentrations. Further experiments evaluated the release of DOX from polymer-DOX conjugate NPs when incorporated in a thermosensitive in situ gelling poly(DL-lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) matrix paste, in order to simulate the clinical setting of a locally injected formulation for GBM following surgical tumour resection. These assays demonstrated drug release from the polymer pro-drugs, when in PLGA/PEG matrices of two formulations, over clinically relevant time scales. These findings encourage future in vivo assessment of the potential capability of polymer–drug conjugate NPs to penetrate brain parenchyma efficaciously, when released from existing interstitial delivery systems.


2021 ◽  
Vol 156 (0) ◽  
pp. 90-94
Author(s):  
Shigeru Matsuda ◽  
Yuki Yamaguchi ◽  
Daiki Mochizuki ◽  
Atsushi Imai ◽  
Masataka Sone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document