illumina 450k
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Shuying Sun ◽  
Jael Dammann ◽  
Pierce Lai ◽  
Christine Tian

Abstract Background: Breast cancer is one of the most commonly diagnosed cancers. It is associated with DNA methylation, an epigenetic event with a methyl group added to a cytosine paired with a guanine, i.e., a CG site. The methylation levels of different genes in a genome are correlated in certain ways that affect gene functions. This correlation pattern is known as co-methylation. It is still not clear how different genes co-methylate in the whole genome of breast cancer samples. Previous studies are conducted using relatively small datasets (Illumina 27K data). In this study, we analyze much larger datasets (Illumina 450K data). Results: Our key findings are summarized below. First, normal samples have more highly correlated, or co-methylated, CG pairs than tumor samples. Both tumor and normal have more than 93% of positive co-methylation, but normal samples have significantly more negatively correlated CG sites than tumor samples (6.6% vs. 2.8%). Second, both tumor and normal samples have about 94% of co-methylated CG pairs on different chromosomes, but normal samples have 470 million more CG pairs. Highly co-methylated pairs on the same chromosome tend to be close to each other. Third, a small proportion of CG sites’ co-methylation patterns change dramatically from normal to tumor. The percentage of differentially methylated (DM) sites among them is larger than the overall DM rate. Fourth, certain CG sites are highly correlated with many CG sites; the top 100 of such super-connector CG sites in tumor and normal samples have no overlaps. Fifth, both highly changing sites and super-connector sites’ locations are significantly different from the genome-wide CG sites’ locations. Sixth, chromosome X co-methylation patterns are very different from other chromosomes. Finally, the network analyses of genes associated with several sets of co-methylated CG sites identified above show that tumor and normal samples have different patterns. Conclusions: Our findings will provide researchers with a new understanding of co-methylation patterns in breast cancer. Our ability to thoroughly analyze co-methylation of large datasets will allow researchers to study relationships and associations between different genes in breast cancer.


2021 ◽  
Author(s):  
Shuying Sun ◽  
Jael Dammann ◽  
Pierce Lai ◽  
Christine Tian

Abstract Background: Breast cancer is one of the most commonly diagnosed cancers. It is associated with DNA methylation, an epigenetic event with a methyl group added to a cytosine paired with a guanine, i.e., a CG site. The methylation levels of different genes in a genome are correlated in certain ways that affect gene functions. This correlation pattern is known as co-methylation. It is still not clear how different genes co-methylate in the whole genome of breast cancer samples. Previous studies are conducted using relatively small datasets (Illumina 27K data). In this study, we analyze much larger datasets (Illumina 450K data). Results: Our key findings are summarized below. First, normal samples have more highly correlated, or co-methylated, CG pairs than tumor samples. Both tumor and normal have more than 93% of positive co-methylation, but normal samples have significantly more negatively correlated CG sites than tumor samples (6.6% vs. 2.8%). Second, both tumor and normal samples have about 94% of co-methylated CG pairs on different chromosomes, but normal samples have 470 million more CG pairs. Highly co-methylated pairs on the same chromosome tend to be close to each other. Third, a small proportion of CG sites’ co-methylation patterns change dramatically from normal to tumor. The percentage of differentially methylated (DM) sites among them is larger than the overall DM rate. Fourth, certain CG sites are highly correlated with many CG sites; the top 100 of such super-connector CG sites in tumor and normal samples have no overlaps. Fifth, both highly changing sites and super-connector sites’ locations are significantly different from the genome-wide CG sites’ locations. Sixth, chromosome X co-methylation patterns are very different from other chromosomes. Finally, the network analyses of genes associated with several sets of co-methylated CG sites identified above show that tumor and normal samples have different patterns. Conclusions: Our findings will provide researchers with a new understanding of co-methylation patterns in breast cancer. Our ability to thoroughly analyze co-methylation of large datasets will allow researchers to study relationships and associations between different genes in breast cancer.


2021 ◽  
Author(s):  
Shuying Sun ◽  
Jael Dammann ◽  
Pierce Lai ◽  
Christine Tian

Abstract Background Breast cancer is one of the most commonly diagnosed cancers. It is associated with DNA methylation, an epigenetic event with a methyl group added to a cytosine paired with a guanine, i.e., a CG site. The methylation levels of different genes in a genome are correlated in certain ways that affect gene functions. This correlation pattern is known as co-methylation. It is still not clear how different genes co-methylate in the whole genome of breast cancer samples. Previous studies are conducted using relatively small datasets (Illumina 27K data). In this study, we analyze much larger datasets (Illumina 450K data). Results Our key findings are summarized below. First, normal samples have more highly correlated, or co-methylated, CG pairs than tumor samples. Both tumor and normal have more than 93% of positive co-methylation, but normal samples have significantly more negatively correlated CG sites than tumor samples (6.6% vs. 2.8%). Second, both tumor and normal samples have about 94% of co-methylated CG pairs on different chromosomes, but normal samples have 470 million more CG pairs. Highly co-methylated pairs on the same chromosome tend to be close to each other. Third, a small proportion of CG sites’ co-methylation patterns change dramatically from normal to tumor. The percentage of differentially methylated (DM) sites among them is larger than the overall DM rate. Fourth, certain CG sites are highly correlated with many CG sites; the top 100 of such super-connector CG sites in tumor and normal samples have no overlaps. Fifth, both highly changing sites and super-connector sites’ locations are significantly different from the genome-wide CG sites’ locations. Sixth, chromosome X co-methylation patterns are very different from other chromosomes. Finally, the network analyses of genes associated with several sets of co-methylated CG sites identified above show that tumor and normal samples have different patterns. Conclusions Our findings will provide researchers with a new understanding of co-methylation patterns in breast cancer. Our ability to thoroughly analyze co-methylation of large datasets will allow researchers to study relationships and associations between different genes in breast cancer.


Epigenetics ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. 1177-1182 ◽  
Author(s):  
Nora Fernandez-Jimenez ◽  
Catherine Allard ◽  
Luigi Bouchard ◽  
Patrice Perron ◽  
Mariona Bustamante ◽  
...  

2019 ◽  
Author(s):  
Oliver J. Watkeys ◽  
Sarah Cohen-Woods ◽  
Yann Quidé ◽  
Murray J. Cairns ◽  
Bronwyn Overs ◽  
...  

AbstractSchizophrenia (SZ) and bipolar disorder (BD) share numerous clinical and biological features as well as environmental risk factors that may be associated with altered DNA methylation. In this study we sought to construct a Poly-Methylomic Profile Score (PMPS) for SZ, representing the degree of epigenome-wide methylation according to previously published findings; we then examined its association with SZ and BD in an independent sample. DNA methylation for 57 SZ, 59 BD cases and 55 healthy controls (HCs) was quantified using the Illumina 450K methylation beadchip. We constructed five PMPSs for different p-value thresholds using summary statistics reported in a large epigenome-wide schizophrenia case-control association study, weighted by individual CpG effect sizes. All SZ PMPSs were significantly elevated in SZ cases relative to HCs, with the score calculated at the most stringent threshold accounting for the greatest amount of variance in SZ (compared to other PMPSs derived at more inclusivep-value thresholds). However, none of the PMPSs were associated with BD, or a combined cohort of BD and SZ cases relative to HCs. Results demonstrating elevated PMPSs in SZ relative to BD did not survive correction for multiple testing. PMPSs were also not associated with positive or negative symptom severity. That this SZ-derived PMPSs was elevated among SZ, but not BD participants, suggests that epigenome-wide methylation patterns associated with schizophrenia may represent distinct pathophysiology that is yet to be elucidated. Whether this PMPS may be associated with neuroanatomical or other biological endophenotypes relevant to SZ and/or BD remains to be determined.


2018 ◽  
Author(s):  
Shicai Fan ◽  
Jianxiong Tang ◽  
Nan Li ◽  
Ying Zhao ◽  
Rizi Ai ◽  
...  

AbstractThe integration of genomic and DNA methylation data has been demonstrated as a powerful strategy in understanding cancer mechanisms and identifying therapeutic targets. The TCGA consortium has mapped DNA methylation in thousands of cancer samples using Illumina Infinium Human Methylation 450K BeadChip (Illumina 450K array) that only covers about 1.5% of CpGs in the human genome. Therefore, increasing the coverage of the DNA methylome would significantly leverage the usage of the TCGA data. Here, we present a new model called EAGLING that can expand the Illumina 450K array data 18 times to cover about 30% of the CpGs in the human genome. We applied it to analyze 13 cancers in TCGA. By integrating the expanded methylation, gene expression and somatic mutation data, we identified the genes showing differential patterns in each of the 13 cancers. Many of the triple-evidenced genes identified in the majority of the cancers are biomarkers or potential biomarkers. Pan-cancer analysis also revealed the pathways in which the triple-evidenced genes are enriched, which include well known ones as well as new ones such as axonal guidance signaling pathway and pathways related to inflammatory processing or inflammation response. Triple-evidenced genes, particularly TNXB, RRM2, CELSR3, SLC16A3, FANCI, MMP9, MMP11, SIK1, TRIM59, showed superior predictive power in both tumor diagnosis and prognosis. These results have demonstrated that the integrative analysis using the expanded methylation data is powerful in identifying critical genes/pathways that may serve as new therapeutic targets.


Epigenetics ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. 655-664 ◽  
Author(s):  
Olivia Solomon ◽  
Julie MacIsaac ◽  
Hong Quach ◽  
Gwen Tindula ◽  
Michael S. Kobor ◽  
...  

2018 ◽  
Vol 24 (7) ◽  
pp. 1503-1509 ◽  
Author(s):  
Andrew D Beggs ◽  
Jonathan James ◽  
Germaine Caldwell ◽  
Toby Prout ◽  
Mark P Dilworth ◽  
...  

Abstract Background and aims Ulcerative colitis (UC) is associated with a higher background risk of dysplasia and/or neoplasia due to chronic inflammation. There exist few biomarkers for identification of patients with dysplasia, and targeted biopsies in this group of patients are inaccurate in reliably identifying dysplasia. We aimed to examine the epigenome of UC dysplasia and to identify and validate potential biomarkers Methods Colonic samples from patients with UC-associated dysplasia or neoplasia underwent epigenome-wide analysis on the Illumina 450K methylation array. Markers were validated by bisulphite pyrosequencing on a secondary validation cohort and accuracy calculated using logistic regression and receiver-operator curves. Results Twelve samples from 4 patients underwent methylation array analysis and 6 markers (GNG7, VAV3, KIF5C, PIK3R5, TUBB6, and ZNF583) were taken forward for secondary validation on a cohort of 71 colonic biopsy samples consisting of normal uninflamed mucosa from control patients, acute and chronic colitis, “field” mucosa in patients with dysplasia/neoplasia, dysplasia, and neoplasia. Methylation in the beta-tubulin TUBB6 correlated with the presence of dysplasia (P < 0.0001) and accurately discriminated between dysplasia and nondysplastic tissue, even in the apparently normal field mucosa downstream from dysplastic lesions (AUC 0.84, 95% CI 0.81–0.87). Conclusions Methylation in TUBB6 is a potential biomarker for UC- associated dysplasia. Further validation is needed and is ongoing as part of the ENDCAP-C study.


Sign in / Sign up

Export Citation Format

Share Document