circular segment
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shilpee Patil ◽  
Anil Kumar Singh ◽  
Vijay Kumar Pandey ◽  
Binod Kumar Kanaujia ◽  
Anil Kumar Pandey

Abstract A simple and compact circularly polarized broadband circular slot antenna is proposed for WLAN/WiMAX/DBS applications. The main objective of this work is to design a microstrip line fed broadband circularly polarized antenna that is achieved by introducing an asymmetric perturbation over the circular slot onto the ground plane. A broad axial ratio bandwidth is achieved by using a small circular segment cut into the circular slotted ground and by adding a short stub on the feedline. To achieve a broad impedance bandwidth, a horizontal strip onto the slotted ground is placed just above the feed line on the opposite side. The proposed antenna is fabricated with an overall dimension of 20 × 20 × 1.6 mm3 (0.34λ o × 0.34λ o × 0.03λ o, where λ o represents the free-space wavelength at the center operating frequency). It is found that the impedance bandwidth of 75.82% ranges from 3.21 to 7.13 GHz and the 3 dB axial ratio (AR) bandwidth reaches 54.27% from 3.8 to 6.6 GHz. Throughout this paper, the improvement and validation process of the proposed antenna outcomes to accomplish desired characteristics are discussed.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1411
Author(s):  
Dusan Vallo ◽  
Jozef Fulier ◽  
Lucia Rumanova

In this paper, we introduce the notion of an elliptical segment as some analogy of the circular segment and we focus on the problem of calculation of its area. Based on the analytical method, we derive the formulas, which can be used for the numerical approximation of the area of the given segment.


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141774947 ◽  
Author(s):  
Vladimir Mostyn ◽  
Vaclav Krys ◽  
Tomas Kot ◽  
Zdenko Bobovsky ◽  
Petr Novak

The article describes the process of development of an essentially new wheel suitable both for moving on flat ground and for travelling on stairs. The stair-climbing wheel is composed of rotary circular segments arranged around a shared carrier with arms to form a complete circular profile of the wheel adapted for moving on flat ground; for travelling on stairs, individual segments are rotated by an appropriate angle to touch down tangentially on the stepping surface of the stairs. The dimensions of individual segments, the centre of rotation of individual segments and the angle of their partial turn have been chosen so that the length of the arc along which the circular segment rolls is equal to the length of the stepping surface of an average stair, and, at the same time, the circular segment touches down tangentially on the stepping surface while the wheel turns around the edge of the previous segment. Using the rotation angle of the turnable segments, the wheel can be adapted to the height of non-standard stairs. The segments can be inclined in both directions for bidirectional movement of the wheel up and down the stairs. An undercarriage equipped with these wheels can be used in the field of exploratory robots and for the transportation of persons and materials on stairs.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
A. Mohammadi ◽  
J. M. Floryan

The performance of grooves capable of reducing shear drag in laminar channel flow driven by a pressure gradient has been analyzed numerically. Only grooves with shapes that are easy to manufacture have been considered. Four classes of grooves have been studied: triangular grooves, trapezoidal grooves, rectangular grooves, and circular-segment grooves. Two types of groove placements have been considered: grooves that are cut into the surface (they can be created using material removal techniques) and grooves that are deposited on the surface (they can be created using material deposition techniques). It has been shown that the best performance is achieved when the grooves are aligned with the flow direction and are symmetric. For each class of grooves, there exists an optimal groove spacing, which results in the largest drag reduction. The largest drag reduction results from the use of trapezoidal grooves and the smallest results from the use of triangular grooves for the range of parameters considered in this work. Placing the same grooves on both walls increases the drag reduction by up to four times when comparing with grooves on one wall only. The predictions remain valid for any Reynolds number as long as the flow remains laminar.


2014 ◽  
Vol 108 (3) ◽  
pp. 172-175
Keyword(s):  

The number 8 often appears as two overlapping circles, as shown in photographs 1 and 2. This design can be made by starting with two circles, removing a circle and a circular segment from each circle, and then joining the regions that remain (see fig. 1).


Sign in / Sign up

Export Citation Format

Share Document