TEM wave propagation in a microstrip line on a substrate of circular segment cross section

2015 ◽  
Vol 66 (6) ◽  
pp. 3727-3735
Author(s):  
P. Malits ◽  
M. Haridim ◽  
S. Chulski
2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


1999 ◽  
Vol 62 (1) ◽  
pp. 87-94 ◽  
Author(s):  
J. GONG

A dispersion equation is derived for a cylindrical waveguide of circular cross-section partially filled with chiroplasma. The propagation characteristics of electromagnetic waves in the family of waveguide modes are studied. The dispersion curves are given. It is found that the propagation constant changes almost linearly with the chirality admittance for the parameters that we choose, and increases with increasing filled area.


2021 ◽  
pp. 1-12
Author(s):  
Rajan Prasad ◽  
Ajinkya Baxy ◽  
Arnab Banerjee

Abstract This work proposes a unique configuration of two-dimensional metamaterial lattice grid comprising of curved and tapered beams. The propagation of elastic waves in the structure is analyzed using the dynamic stiffness matrix (DSM) approach and the Floquet-Bloch theorem. The DSM for the unit cell is formulated under the extensional theory of curved beam considering the effects of shear and rotary inertia. The study considers two types of variable rectangular cross-sections, viz. single taper and double taper along the length of the beam. Further, the effect of curvature and taper on the wave propagation is analysed through the band diagram along the irreducible Brillouin zone. It is shown that a complete band gap, i.e. attenuation band in all the directions of wave propagation, in a homogeneous structure can be tailored with a suitable combination of curvature and taper. Generation of the complete bandgap is hinged upon the coupling of axial and transverse component of the lattice grid. This coupling emerges due to the presence of the curvature and further enhanced due to tapering. The double taper cross-section is shown to have wider attenuation characteristics than single taper cross-sections. Specifically, 83.36% and 63% normalized complete bandwidth is achieved for the double and single taper cross-section for a homogeneous metamaterial, respectively. Additional characteristics of the proposed metamaterial in time and frequency domain of the finite structure, vibration attenuation, wave localization in the equivalent finite structure are also studied.


Sign in / Sign up

Export Citation Format

Share Document