criterion response
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

1994 ◽  
Vol 49 (4) ◽  
pp. 1113-1117 ◽  
Author(s):  
Lisa E. Kalynchuk ◽  
Tod E. Kippin ◽  
John P.J. Pinel ◽  
Cameron P. McIntyre

1994 ◽  
Vol 193 (1) ◽  
pp. 13-47 ◽  
Author(s):  
S Shaw

Extracellular recordings from nerve 5 in metathoracic legs of Periplaneta americana disclose a sense organ that is extremely responsive to vibration but also detects sound (best response near 1.8 kHz) with a sensitivity similar to some insect auditory organs. The energy required from an auditory signal for a criterion response is similar or even smaller than for an optimal vibratory input. Responses originate in the subgenual organs (SGO) in the proximal tibiae, and cross-modal adaptation indicates that the same cells respond to both vibration and sound. Sound is picked up directly on some internal structure, not via sound-induced substratum vibration. Adaptation at different frequencies discloses no frequency-selectivity in the SGO. The nerve response is a burst of synchronized impulses at a frequency, fR, of approximately 300 Hz, that is practically invariant both with sound intensity and within the burst, suggesting that fR might represent some underlying resonance phenomenon, either of the SGO or of air in the tracheal system. The latter possibility is ruled out by observations made while the tracheae are perfused with He­O2. Similar responses can be recorded from the pro- and mesothoracic legs. Although Periplaneta is thought to be deaf and appears to ignore loud tones presented to the home colony, a more sensitive assay detects small leg movements in response to sound, confirming the presence of a functional auditory sense. The SGO is suspended from an expansion of the leg trachea, which may function to enhance sensitivity to vibration. This linkage preadapts the SGO to detect airborne sound transmitted in the tracheal system, and contact vibration may also stimulate the system in part by deforming the tracheae. It is proposed that auditory organs of crickets evolved from an ancestral SGO that already possessed dual responsiveness by subsequently developing effective vibration-isolating filters.


1993 ◽  
Vol 77 (2) ◽  
pp. 651-658 ◽  
Author(s):  
W. A. Sparrow ◽  
Alison J. Shinkfield ◽  
Nadine Lambe

This experiment investigated the relation between intelligence and acquisition of motor skill using predictions from Zeaman and House's 1963 attention theory. 20 undergraduate students and 20 subjects of low IQ (WAIS—R Full Scale IQ range 50 to 73, M = 60) made linear positioning movements of long and short amplitude to the left and right of a central starting position. Four conditions (right-long, right-short, left-long, left-short) were created by specifying the corresponding target area on the positioning apparatus. One or both of the paired cues were varied, i.e., left, right, long, or short, while the dimensions of direction and amplitude remained unchanged across conditions. A shift from one condition to the next followed a criterion response of four consecutive movements to the target area. Results supported the hypothesis that subjects of low IQ would require more trials to criterion than subjects of normal IQ across all conditions of direction and extent. There was qualified support for the hypothesised interaction between intelligence and cue shifts. The practical implications and theoretical significance of these findings are discussed.


1984 ◽  
Vol 51 (4) ◽  
pp. 812-830 ◽  
Author(s):  
S. J. Bolanowski ◽  
J. J. Zwislocki

Intensity characteristics that relate receptor- (generator) potential amplitude to vibration amplitude and frequency characteristics that relate either the stimulus intensity required for a criterion response or the phase angle between the stimulus and the receptor potential to vibration frequency have been obtained from isolated pacinian corpuscles removed from cat mesentery. The intensity characteristics of signal-averaged receptor potentials in response to sinusoidal displacements were found to be linear at low stimulus levels and to saturate at higher ones. At the higher levels, an asymmetric full-wave rectification was often found, the degree of which varied among receptors. The receptor-potential waveforms showed a time-dependent hysteresis in response to every stimulus cycle at moderate and high stimulus levels. An average intensity characteristic is given. The measured amplitude-frequency characteristics for a constant magnitude of the receptor potential below the neural spike threshold were found to be U-shaped functions. The averaged (n = 7) amplitude-frequency characteristic generated at a constant criterion response had a best frequency of 370 Hz and a bandwidth of Q3 dB equal to 0.8. The phase-frequency characteristics of the receptor potentials below spike threshold exhibited two populations of responses. Both populations underwent phase changes of about 300 degrees as the vibration frequency was increased from 20 Hz to 1.0 kHz but were separated by 180 degrees. An average (n = 8) phase-frequency characteristic is shown. For a constant neural firing rate, the relationship between receptor-potential amplitude and stimulus frequency was also U-shaped. Several qualitative physiological models are presented in relation to previously reported anatomical evidence (14, 18, 19, 32, 45). For the intensity domain, it is suggested that the cytoplasmic extensions that protrude from the unmyelinated portion of the corpuscle axon into the hemilamellar clefts are responsible for the asymmetric full-wave rectification and the response polarity in the phase-frequency characteristics. It is the asymmetric full-wave rectification and consequent receptor-potential waveforms that produce the 2 spikes/stimulus cycle plateaus in the characteristics relating firing rate to stimulus intensity described in the preceding paper (5). An additional model, based on the recovery of spike threshold, suggests how the plateaus in the firing rate-intensity characteristics (5) are produced. For the frequency domain, three filters in cascade can account for the frequency characteristic obtained with a constant firing rate criterion (see Ref. 5).(ABSTRACT TRUNCATED AT 400 WORDS)


1982 ◽  
Vol 48 (4) ◽  
pp. 968-980 ◽  
Author(s):  
G. W. Balkema ◽  
L. H. Pinto

1. The organization of the receptive fields of retinal ganglion cells in te normal mouse was studied qualitatively in recordings from 43 single axons in the optic nerve and optic tract, and the light sensitivity was studied quantitatively in 26 of these cells by measuring incremental sensitivity. 2. The receptive fields of normal animals were elliptical, had concentric center and peripheral subdivisions, and had an antagonistic center/surround organization; the receptive-field centers ranged from 1.95 to 83 degrees in diameter, with a median of 7 degrees. 3. The incremental sensitivity to white light was measured using a criterion response of 10 extra spikes; the most sensitive dark-adapted cell required a stimulus luminance of 3.5 x 10(-3) cd/m2 to generate a criterion response. 4. The action spectrum measured at seven different wavelengths (433-619 nm) from ganglion cells in the normally pigmented mouse resembled the CIE (International Commission on Illumination, CIE 1957 (11)) relative scotopic luminous efficiency function (41) and is consistent with a curve having a peak around 500 nm. 5. On light adaptation with blue light (less than 460 nm), the sensitivity to longer wavelength stimuli increased by 0.2-0.5 log units relative to the sensitivity to the shorter wavelengths; these results are compatible with the presence of a photoreceptor sensitive to long wavelengths in the normally pigmented mouse (C57BL/6J+/+). 6. The organization of the receptive fields of 48 retinal ganglion cells from the hypopigmentation mutant pearl (C57BL/6J-pe) was also studied qualitatively; the receptive field organization was similar to that of the normally pigmented mouse. 7. In 25 cells from dark-adapted pearl mice, the incremental sensitivity to white light was, on the average, 1.6 log units less than that for normal mice. 8. The dark-adapted action spectrum of pearl mice was similar to that of normally pigmented mice. However, a shift in sensitivity to longer wavelengths did not occur on selective light adaptation with the most luminous blue light (less than 460 nm) background that we could produce. 9. We conclude that pearl is one of the mammalian genes that codes for functions that affect dark-adapted retinal sensitivity. The results of this study and past studies suggest that the pearl gene's action on light sensitivity is predominantly within the retina and before (distal to) the ganglion cells.


1978 ◽  
Vol 72 (6) ◽  
pp. 801-819 ◽  
Author(s):  
G A Engbretson ◽  
P Witkovsky

Xenopus larvae were raised on a vitamin A-free diet under constant illumination until their visual pigment content had decreased to between 8% of normal and an undetectably low level. After the intramuscular injection of 2.1 X 10(13-2.1 X 10(16) molecules of [3H]vitamin A, ocular tissue showed a rapid rate of uptake of label which reached a maximum level of incorporation by 48 h. Light-microscopic autoradiography revealed that the retinal uptake of label was concentrated within the receptor outer segments. Spectral transmissivity measurements at various times after injection were made upon intact retinas and upon digitonin extracts. They showed that visual pigment with a lambdamax of 504 nm was formed in the retina and that the amount formed was a function of incubation time and the magnitude of the dose administered. Electrophysiological measures of photoreceptor light responses were obtained from the PIII component of the electroretinogram, isolated with aspartate. The quantal flux required to elicit a criterion response was determined and related to the fraction of visual pigment present. The results showed that rod sensitivity varied linearly with the probability of quantal absorption.


1969 ◽  
Vol 11 (2) ◽  
pp. 66-75 ◽  
Author(s):  
TSUNEKO YOSHIDA ◽  
MASAKO KAI ◽  
HIROSHI IMADA

1968 ◽  
Vol 58 (8) ◽  
pp. 1164_3
Author(s):  
John G. Webster ◽  
Gerald H. Cohen ◽  
Robert M. Boynton

Sign in / Sign up

Export Citation Format

Share Document