single cardiac cycle
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 129 (2) ◽  
pp. 230-237
Author(s):  
Tyler D. Vermeulen ◽  
Brooke M. Shafer ◽  
Anthony V. Incognito ◽  
Massimo Nardone ◽  
André L. Teixeira ◽  
...  

We characterize the occurrence of a square-wave discharge pattern of efferent muscle sympathetic nerve activity during a sinus pause in a young healthy male. This discharge pattern comprised large recruited action potential clusters undetected at baseline that continuously discharged during the sinus pause. Notably, this discharge pattern was still contained within a single cardiac cycle.


2016 ◽  
Vol 7 (12) ◽  
pp. 4847 ◽  
Author(s):  
Tae Shik Kim ◽  
Hyun-Sang Park ◽  
Sun-Joo Jang ◽  
Joon Woo Song ◽  
Han Saem Cho ◽  
...  

2016 ◽  
Vol 9 (5) ◽  
pp. 623-625 ◽  
Author(s):  
Sun-Joo Jang ◽  
Hyun-Sang Park ◽  
Joon Woo Song ◽  
Tae Shik Kim ◽  
Han Saem Cho ◽  
...  

1995 ◽  
Vol 268 (1) ◽  
pp. H17-H24 ◽  
Author(s):  
W. Y. Lew

Load-dependent relaxation was studied in six anesthetized dogs by inflating an intra-aortic balloon to increase peak left ventricular (LV) pressure by 1–20 mmHg within a single cardiac cycle. A series of timed and graded pressure loads was produced by inflating the balloon either during diastole (early loads) or midsystole (midsystolic pressure loads). The rate of LV pressure fall was measured with the time constant (tau). There was a significant increase in tau with 63 midsystolic pressure load [tau increased 1.4 +/- 0.1% (SE)/mmHg increase in peak LV pressure] but not with 67 early pressure loads (-0.5 +/- 0.1%/mmHg). This difference remained with LV pacing-induced asynchrony (tau increased 1.8 +/- 0.1%/mmHg with 54 midsystolic pressure loads compared with -0.2 +/- 0.1%/mmHg with 56 early pressure loads) and after 5 micrograms/kg of intravenous ryanodine (tau increased 1.0 +/- 0.2%/mmHg with 58 midsystolic pressure loads compared with -0.7 +/- 0.1%/mmHg with 59 early pressure loads). When compared with control, asynchrony significantly augmented and ryanodine significantly attenuated the effects of midsystolic pressure loads. In conclusion, asynchrony and ryanodine modulate the extent of load-dependent relaxation in the intact left ventricle.


Sign in / Sign up

Export Citation Format

Share Document