spatial compounding
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Belfor Galaz ◽  
Teresa Henriquez ◽  
David Espindola ◽  
Miguel Trejo

2021 ◽  
Vol 11 (19) ◽  
pp. 9200
Author(s):  
Siyi Liang ◽  
Lidai Wang

We present a new spatial compounding method to improve the contrast of ultrasonic images for non-delayed sequential beamforming (NDSB). Sequential beamforming adopts more than one beamformer to reconstruct B-mode images which has the advantage of simple front-end electronics and fast data transfer rate. Via field pattern analysis, we propose a compounding method where two more sub-images can be reconstructed along with the NDSB sub-image. These sub-images can be seen as being produced with different transmit origins; thus, their summation enhances image contrast. Image quality was analyzed in terms of spatial resolution, contrast ratio (CR), and contrast-to-noise ratio (CNR). The proposed compounding method improves the lateral resolution up to 41%. In vitro results confirm a 13.0-dB CR and 4.0-dB CNR improvement. In vivo results reveal 10.9-dB and 6.0-dB improvement in CR and CNR for cross-section jugular vein and 8.0-dB and 4.5-dB improvement in CR and CNR for the longitudinal-section carotid artery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Parastoo Afshari ◽  
Christian Zakian ◽  
Jeannine Bachmann ◽  
Vasilis Ntziachristos

AbstractEndoscopic ultrasonography (EUS) is a safe, real-time diagnostic and therapeutic tool. Speckle noise, inherent to ultrasonography, degrades the diagnostic precision of EUS. Elevational angular compounding (EAC) can provide real-time speckle noise reduction; however, EAC has never been applied to EUS because current implementations require costly and bulky arrays and are incompatible with the tight spatial constraints of hollow organs. Here we develop a radial implementation of a refraction-based elevational angular compounding technique (REACT) for EUS and demonstrate for the first time spatial compounding in a radial endoscopy. The proposed implementation was investigated in cylindrical phantoms and demonstrated superior suppression of ultrasound speckle noise and up to a two-fold improvement in signal- and contrast- ratios, compared to standard image processing techniques and averaging. The effect of elevational angular deflection on image fidelity was further investigated in a phantom with lymph node-like structures to determine the optimum elevational angular width for high speckle reduction efficiency while maintaining image fidelity. This study introduces REACT as a potential compact and low-cost solution to impart current radial echo-endoscopes with spatial compounding, which could enable accurate identification and precise sizing of lymph nodes in staging of gastrointestinal tract cancers.


Ultrasonics ◽  
2021 ◽  
Vol 114 ◽  
pp. 106376
Author(s):  
Andres Coila ◽  
Julien Rouyer ◽  
Omar Zenteno ◽  
Adam Luchies ◽  
Michael L. Oelze ◽  
...  

2021 ◽  
Vol 21 (6) ◽  
pp. 1759-1767
Author(s):  
Scott Curtis ◽  
Kelley DePolt ◽  
Jamie Kruse ◽  
Anuradha Mukherji ◽  
Jennifer Helgeson ◽  
...  

Abstract. The simultaneous rise of tropical-cyclone-induced flood waters across a large hazard management domain can stretch rescue and recovery efforts. Here we present a means to quantify the connectedness of maximum surge during a storm with geospatial statistics. Tide gauges throughout the extensive estuaries and barrier islands of North Carolina deployed and operating during hurricanes Matthew (n=82) and Florence (n=123) are used to compare the spatial compounding of surge for these two disasters. Moran's I showed the occurrence of maximum storm tide was more clustered for Matthew compared to Florence, and a semivariogram analysis produced a spatial range of similarly timed storm tide that was 4 times as large for Matthew than Florence. A more limited data set of fluvial flooding and precipitation in eastern North Carolina showed a consistent result – multivariate flood sources associated with Matthew were more concentrated in time as compared to Florence. Although Matthew and Florence were equally intense, they had very different tracks and speeds which influenced the timing of surge along the coast.


2021 ◽  
Author(s):  
Ping Gong

This dissertation describes ultrasound algorithms developed for synthetic transmit aperture (STA) imaging during the transmission and the image reconstruction stages. Images generated using these algorithms demonstrate image quality enhancement both theoretically and experimentally. The advanced algorithms also improve the application of STA imaging. Due to the single element transmission pattern, the low signal-to-noise ratio is a major limitation for STA imaging. A delay-encoded transmission scheme (DE-STA) was designed in this dissertation to encode all the transmissions. The decoded RF signals were equivalent to the standard STA signals, but with a higher SNR. Improved image qualities were observed under DE-STA transmission in terms of lateral resolution (+28%), peak-signal-to-noise ratio (PSNR, +7 dB) and target contrast-to-noise ratio (CNR, +360%) compared to those acquired with the standard STA mode. The stability of DE-STA was analyzed and verified under various noise levels by the special distribution of the singular values of the encoding matrix through singular value decomposition (SVD) (i.e. all the singular values were the same except for the first one and the last one). A more efficient decoding process was also derived based on pseudo-inversion (PI) and the computation complexity was reduced by 2/3. Speckle and undesired sidelobe signals can reduce the lesion CNR and detectability in ultrasound images. Typically, the CNR can be increased by spatial compounding (SC) or frequency compounding (FC) during reconstruction. We proposed methods to implement a 2-dimentional (2-D) aperture domain filter in the SC/FC processes, referred to as filtered spatial compounding (FSC) and filtered frequency compounding (FFC), for synthetic transmit aperture (STA) imaging. Both techniques reduced the sidelobe interference and provided improved lesion CNR. Consequently, the lesion signal-to-noise ratio (lSNR) in FSC and FFC increased (up to +130%), compared to that in the standard delay-and-sum (DAS) method. This dissertation investigates all these proposed advanced ultrasound algorithms, with the end goal of implementing these methods in STA imaging to extend its application in clinic.


2021 ◽  
Author(s):  
Ping Gong

This dissertation describes ultrasound algorithms developed for synthetic transmit aperture (STA) imaging during the transmission and the image reconstruction stages. Images generated using these algorithms demonstrate image quality enhancement both theoretically and experimentally. The advanced algorithms also improve the application of STA imaging. Due to the single element transmission pattern, the low signal-to-noise ratio is a major limitation for STA imaging. A delay-encoded transmission scheme (DE-STA) was designed in this dissertation to encode all the transmissions. The decoded RF signals were equivalent to the standard STA signals, but with a higher SNR. Improved image qualities were observed under DE-STA transmission in terms of lateral resolution (+28%), peak-signal-to-noise ratio (PSNR, +7 dB) and target contrast-to-noise ratio (CNR, +360%) compared to those acquired with the standard STA mode. The stability of DE-STA was analyzed and verified under various noise levels by the special distribution of the singular values of the encoding matrix through singular value decomposition (SVD) (i.e. all the singular values were the same except for the first one and the last one). A more efficient decoding process was also derived based on pseudo-inversion (PI) and the computation complexity was reduced by 2/3. Speckle and undesired sidelobe signals can reduce the lesion CNR and detectability in ultrasound images. Typically, the CNR can be increased by spatial compounding (SC) or frequency compounding (FC) during reconstruction. We proposed methods to implement a 2-dimentional (2-D) aperture domain filter in the SC/FC processes, referred to as filtered spatial compounding (FSC) and filtered frequency compounding (FFC), for synthetic transmit aperture (STA) imaging. Both techniques reduced the sidelobe interference and provided improved lesion CNR. Consequently, the lesion signal-to-noise ratio (lSNR) in FSC and FFC increased (up to +130%), compared to that in the standard delay-and-sum (DAS) method. This dissertation investigates all these proposed advanced ultrasound algorithms, with the end goal of implementing these methods in STA imaging to extend its application in clinic.


2021 ◽  
Author(s):  
Scott Curtis ◽  
Kelley DePolt ◽  
Jamie Kruse ◽  
Anuradha Mukherji ◽  
Jennifer Helgeson ◽  
...  

Abstract. The simultaneous rise of tropical cyclone induced flood waters across a large hazard management domain can stretch rescue and recovery efforts. Here we present a means to quantify the connectedness of maximum surge during a storm with geospatial statistics. Tide gauges throughout the extensive estuaries and barrier islands of North Carolina deployed and operating during Hurricanes Matthew (n = 82) and Florence (n = 123) are used to compare the spatial compounding of surge for these two disasters. Moran's I showed the occurrence of maximum storm tide was more clustered for Matthew compared to Florence, and a semivariogram analysis produced a spatial range of similarly timed storm tide that was four times as large for Matthew than Florence. A more limited data set of fluvial flooding and precipitation in eastern North Carolina showed a consistent result – multivariate flood sources associated with Matthew were more concentrated in time as compared to Florence. Although Matthew and Florence were equally intense, they had very different tracks and speeds, which influenced the timing of surge along the coast. We hope this method could be used for other landfalling tropical cyclones to better understand the drivers that lead to spatially compounded surge events.


2020 ◽  
Vol 10 (18) ◽  
pp. 6254
Author(s):  
Hongtong Li ◽  
Ivana Ivankovic ◽  
Jiao Li ◽  
Daniel Razansky ◽  
Xosé Luís Deán-Ben

Volumetric optoacoustic tomography has been shown to provide unprecedented capabilities for ultrafast imaging of cardiovascular dynamics in mice. Three-dimensional imaging rates in the order of 100 Hz have been achieved, which enabled the visualization of transient cardiac events such as arrhythmias or contrast agent perfusion without the need for retrospective gating. The fast murine heart rates (400–600 beats per minute) yet impose limitations when it comes to compounding of multiple frames or accurate registration of multi-spectral data. Herein, we investigate on the capabilities of Fourier analysis of four-dimensional data for coregistration of independent volumetric optoacoustic image sequences of the heart. The fundamental frequencies and higher harmonics of respiratory and cardiac cycles could clearly be distinguished, which facilitated efficient retrospective gating without additional readings. The performance of the suggested methodology was successfully demonstrated by compounding cardiac images acquired by raster-scanning of a spherical transducer array as well as by unmixing of oxygenated and deoxygenated hemoglobin from multi-spectral optoacoustic data.


Sign in / Sign up

Export Citation Format

Share Document