landfalling tropical cyclones
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 44)

H-INDEX

21
(FIVE YEARS 4)

MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 77-82
Author(s):  
HABIBURRAHAMAN BISWAS ◽  
P.K. KUNDU ◽  
D. PRADHAN

caxky dh [kkM+h esa cuus ,oa tehu ls Vdjkus okys pØokrh; rwQkuksa ds  ifj.kkeLo:i  Hkkjh o"kkZ dh otg ls if’pe caxky ds rV lesr Hkkjr ds iwohZ rV ds yksxksa dh tku eky dks dkQh [krjk jgrk gSA tehu ls Vdjkus okys m".kdfVca/kh; pØokrh rwQkuksa dh otg ls gksus okyh o"kkZ dh ek=k dk iwokZuqeku djuk cgqr dfBu gSA m".kdfVca/kh; pØokrh; rwQkuksa ds nk;js esa vkus okys o"kkZ okys {ks=ksa esa laHkkfor pØokrh; rwQku ls gksus okys o"kkZ lap;u dk iwokZuqeku djus ds fy, mixzg ls izkIr o"kkZ njksa dk mi;ksx fd;k tk ldrk gSA bl 'kks/k i= esa ‘vkbyk’ ds m".kdfVca/kh; o"kkZ ekiu fe’ku ¼Vh- vkj- ,e- ,e-½] mixzg o"kkZ nj vk¡dM+ksa rFkk rwQku ds ns[ks x, ekxZ dk mi;ksx djrs gq, m".kdfVca/kh; pØokr ‘vkbyk’ ds tehu ls Vdjkus ls 24 ?kVsa igys rVh; LVs’kuksa ij o"kkZ dk vkdyu djus dk iz;kl fd;k x;k gSA la;qDr jkT; vesfjdk esa fodflr lqifjfpr rduhd ds vk/kkj ij  m".kdfVca/kh; pØokr ‘vkbyk’ ds tehu ls Vdjkus ds 24 ?kaVs igys m".kdfVca/kh; o"kkZ foHko ¼Vh- vkj- ,- ih-½ iwokZuqeku fo’ks"k :i  ls rwQku dh fn’kk ds lkeus vkus okys rVh; {ks=ksa ds fy, vPNh o"kkZ dk iwokZuqeku miyC/k djkrk gSA Major threat to the life and property of people on the east coast of India, including West Bengal Coast, is due to very heavy rainfall from landfalling tropical cyclones originated over Bay of Bengal. Forecasting magnitude of rainfall from landfalling tropical cyclones is very difficult. Satellite derived rain rates over the raining areas of tropical cyclones can be used to forecast potential tropical cyclone rainfall accumulations. In the present study, an attempt has been made to estimate 24 hours rainfall over coastal stations before landfall of tropical Cyclone ‘Aila’ using Tropical Rainfall Measuring Mission (TRMM) satellite rain rates data and observed storm track of Aila. Forecast Tropical Rainfall Potential (TRaP), 24 hours prior to landfall for the tropical cyclone ‘Aila’ based on well known technique developed in USA, provides a good rainfall forecast especially for the coastal areas lying at the head of direction of the storm.


MAUSAM ◽  
2021 ◽  
Vol 63 (2) ◽  
pp. 193-202
Author(s):  
CHARAN SINGH ◽  
SUNIT DAS ◽  
R.B. VERMA ◽  
B. L. VERMA ◽  
B.K. BANDYOPADHYAY

One of the most significant impacts of landfalling tropical cyclones is caused by the copiousrainfall associated with it. The main emphasis of present study is to provide some guidance to the operational forecastersfor indicating the possible rainfall over the areas likely to be affected by the cyclones after landfall. Study of 14 pastlandfalling cyclones reveals that the maximum rainfall occurred in the first forward quadrant of tropical cyclonemovement, followed by the second quadrant and the areas near the track of the cyclones. Isohyetal analysis of 24 hoursrainfall for each cyclone reveals that occurrence of heavy rainfall is generally confined up to 150 kms radius from thestorm centre and rainfall is found to generally extend up to 300 kms with gradual decrease in amount. The rainfallreceiving areas are mostly covered with convective clouds with cloud top temperatures of -80 to -60 ºC, prior to and afterthe landfall of the systems. In 93% of tropical cyclones out of the 14 cases studied, 70 % convection lay to the right of thetrack. To examine the rainfall asymmetry due to asymmetry in distribution of convection, cloud top temperatures derivedfrom satellite infrared imagery data have been taken as the proxy of strong convection. It is also revealed in the study thatthe slow moving tropical cyclones cause heavy rain rather than fast moving tropical cyclones. The Bay of Bengalcyclones which crossed coast as cyclonic storm and very severe cyclonic storm caused 71.4% rainfall within the range 0-10 cm, 22.8% rainfall in the range 11-20 cm and 4.3% rainfall within the range 21-30 cm in the area of radius of 300 kmsfrom the centre of the cyclonic storms. For the Arabian Sea tropical cyclones, in general, about 70% rainfall occurredwithin the range 16-25 cm in 24 hours.


Climate ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 174
Author(s):  
Kelvin S. Ng ◽  
Gregor C. Leckebusch ◽  
Qian Ye ◽  
Wenwen Ying ◽  
Haoran Zhao

Parametric typhoon insurances are an increasingly used financial tool to mitigate the enormous impact of tropical cyclones, as they can quickly distribute much-needed resources, e.g., for post-disaster recovery. In order to optimise the reliability and efficiency of parametric insurance, it is essential to have well-defined trigger points for any post-disaster payout. This requires a robust localised hazard assessment for a given region. However, due to the rarity of severe, landfalling tropical cyclones, it is difficult to obtain a robust hazard assessment based on historical observations. A recent approach makes use of unrealised, high impact tropical cyclones from state-of-the-art ensemble prediction systems to build a physically consistent event set, which would be equivalent to about 10,000 years of observations. In this study, we demonstrate that (1) alternative trigger points of parametric typhoon insurance can be constructed from a local perspective and the added value of such trigger points can be analysed by comparing with an experimental set-up informed by current practice; (2) the estimation of the occurrence of tropical cyclone-related losses on the provincial level can be improved. We further discuss the potential future development of a general tropical cyclone compound parametric insurance.


Author(s):  
Jiliang Xuan ◽  
Ruibin Ding ◽  
Feng Zhou

Abstract Landfalling tropical cyclones (TCs) frequently occur with strong intensity in most coastal areas, and storm surges are likely to occur in response to extreme sea level (ESL) growth. However, the level of ESL growth under various wind conditions, coastline geometries and tide-surge interactions has not been clarified. In the Pearl River Estuary and Daya Bay, observations of landfalling TCs have indicated an increasing frequency of intense and rapid landfalls in the 2010s as compared to the 2000s, accompanied by a noteworthy increase in storm surge. Based on a large ensemble (~0.5 million storm surge events with various tracks, maximum wind speeds, maximum wind radiuses, translation speeds and tidal conditions) obtained from well-validated model simulations, the ESL growth in the study area is further quantified as follows: (1) ESL growth is more sensitive to the acceleration effect of landfalling TCs than to the strengthening effect of landfalling TCs since the effect of low acceleration (+3 m/s) is comparable to that under notable strengthening (+10 m/s); (2) ESL growth is strongly modulated by coastline geometry, especially in flared or arching coastline areas. ESL growth mainly occurs along flared coastline areas when landfalling TCs strengthen into severe tropical cyclones or typhoons but can also occur along arching coastline areas for stronger landfalling TCs, such as severe typhoons or supertyphoons; and (3) ESL growth could be increased or decreased by approximately 10% under the effect of tide-surge interactions. Both the large-ensemble method and the above ESL growth characteristics are worthy of attention in risk assessment and rapid prediction of storm surges in shallow waters.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dajun Zhao ◽  
Lianshou Chen ◽  
Yubin Yu

Extreme rainfall induced by landfalling tropical cyclones (ERLTCs) in China can cause flash floods and other disastrous impacts, so investigating their genesis and mechanism of enhancement has been attracting considerable attention. This study demonstrates that the extreme rainfall of landfalling tropical cyclones (LTCs) possesses two key properties—namely, maintenance of the LTC circulation and a lagging (slowing down or looping) of its movement, and the monsoon surge can provide a positive contribution to these properties. Specifically, diagnostics show that the low-level cyclonic vorticity and upper-level divergence of ERLTCs are significantly stronger than those of NERLTCs (non-extreme-rainfall-producing LTCs). The continuous intensification of the cyclonic rotation in the lower troposphere before the occurrence of extreme rainfall is a significant feature that distinguishes ERLTCs from NERLTCs. Vorticity budget analysis further shows that the relative vorticity advection term contributes the most to the local increase and maintenance of vorticity in the middle and lower troposphere of ERLTCs under the influence of the southwest monsoonal surge, thus demonstrating that the monsoonal surge favors the maintenance of LTC circulation. On the other hand, the activity of the southwest monsoonal surge is mainly manifested in the zonal wind anomaly, and the corresponding strong westerly transport can significantly reduce the zonal component of the steering flow. As a result, the total steering flow can be weakened, which decreases the northwestward translation speed of ERLTCs, and thus the monsoonal surge favors a lagging (slowing down or looping) of LTC movement. These results reveal the mechanism of influence through which the monsoonal surge affects ERLTCs via its direct impacts on the maintenance of their circulation and lagging of their movement—two distinct evolutionary characteristics.


Author(s):  
Ryann A. Wakefield ◽  
Jeffrey B. Basara ◽  
J. Marshall Shepherd ◽  
Noah Brauer ◽  
Jason C. Furtado ◽  
...  

AbstractLandfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “Brown Ocean Effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the Brown Ocean Effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were non-negligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p<0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface.


2021 ◽  
Vol 38 (10) ◽  
pp. 1791-1802
Author(s):  
Peiyan Chen ◽  
Hui Yu ◽  
Kevin K. W. Cheung ◽  
Jiajie Xin ◽  
Yi Lu

AbstractA dataset entitled “A potential risk index dataset for landfalling tropical cyclones over the Chinese mainland” (PRITC dataset V1.0) is described in this paper, as are some basic statistical analyses. Estimating the severity of the impacts of tropical cyclones (TCs) that make landfall on the Chinese mainland based on observations from 1401 meteorological stations was proposed in a previous study, including an index combining TC-induced precipitation and wind (IPWT) and further information, such as the corresponding category level (CAT_IPWT), an index of TC-induced wind (IWT), and an index of TC-induced precipitation (IPT). The current version of the dataset includes TCs that made landfall from 1949–2018; the dataset will be extended each year. Long-term trend analyses demonstrate that the severity of the TC impacts on the Chinese mainland have increased, as embodied by the annual mean IPWT values, and increases in TCinduced precipitation are the main contributor to this increase. TC Winnie (1997) and TC Bilis (2006) were the two TCs with the highest IPWT and IPT values, respectively. The PRITC V1.0 dataset was developed based on the China Meteorological Administration’s tropical cyclone database and can serve as a bridge between TC hazards and their social and economic impacts.


Author(s):  
Yi-Jie Zhu ◽  
Jennifer M. Collins ◽  
Philip J. Klotzbach

AbstractUnderstanding tropical cyclone wind speed decay during the post-landfall stage is critical for inland hazard preparation. This paper examines the spatial variation of wind speed decay of tropical cyclones over the continental United States. We find that tropical cyclones making landfall over the Gulf Coast decay faster within the first 24 hours after landfall than those making landfall over the Atlantic East Coast. The variation of the decay rate over the Gulf Coast remains larger than that over the Atlantic East Coast for tropical cyclones that had made landfall more than 24 hours prior. Besides an average weaker tropical cyclone landfall intensity, the near-parallel trajectory and the proximity of storms to the coastline also help to explain the slower post-landfall wind speed decay for Atlantic East Coast landfalling tropical cyclones. Tropical cyclones crossing the Florida peninsula only slowly weaken after landfall, with an average of less than 20% post-landfall wind speed drop while transiting the state. The existence of these spatial variations also brings into question the utility of a uniform wind decay model. While weak intensity decay over the Florida peninsula is well estimated by the uniform wind decay model, the error from the uniform wind decay model increases with tropical cyclones making direct landfall more parallel to the Atlantic East Coast. The underestimation of inland wind speed by the uniform wind decay model found over the western Gulf Coast brings attention to the role of land-air interactions in the decay of inland tropical cyclones.


Sign in / Sign up

Export Citation Format

Share Document