overlapping coefficient
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xushan Zhao ◽  
Yuanxun Wang ◽  
Haiou Zhang ◽  
Runsheng Li ◽  
Xi Chen ◽  
...  

Purpose This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology positively supports the overlapping deposited in multi-beads between layers while actively assisting the subsequent layer's deposition in the wire and arc additive manufacturing (WAAM). Hybrid-deposited and micro-rolling (HDMR) additive manufacturing (AM) technology can smooth the weld bead for improved surface quality. However, the micro-rolling process will change the weld bead profile fitting curve to affect the overlapping coefficient. Design/methodology/approach Weld bead contours for WAAM and HDMR were extracted using line lasers. A comparison of bead profile curves was conducted to determine the influence law of micro-zone rolling on the welding bead contour and fitting curve. Aiming at the optimized overlapping coefficient of weld bead in HDMR AM, the optimal HDMR overlapping coefficient curve was proposed which varies with the reduction based on the best surface flatness. The mathematical model for overlapping in HDMR was checked by comparing the HDMR weld bead contours under different rolling reductions. Findings A fitting function of the bead forming by HDMR AM was proposed based on the law of conservation of mass. The change rule of the HDMR weld bead overlapping spacing with the degree of weld bead rolling reduction was generated using the flat-top transition calculation for this model. Considering the damming-up impact of the first bead, the overlapping coefficient was examined for its effect on layer surface flatness. Originality/value Using the predicted overlapping model, the optimal overlapping coefficients for different rolling reductions can be achieved without experiments. These conclusions can encourage the development of HDMR technology.


Author(s):  
Yimeng Dou ◽  
Yi-hua Tsai ◽  
Chih-Chieh Liu ◽  
Brad A. Hobson ◽  
Pamela J. Lein

2021 ◽  
Vol 42 (1) ◽  
pp. 38-43
Author(s):  
Yu. I. Osenin ◽  
Yu. V. Krivosheya ◽  
A. V. Chesnokov ◽  
V. K. Antoshkin

Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Guido Marcos Ayala ◽  
María Estela Viscarra ◽  
Pedro Sarmento ◽  
Nuno Negrões ◽  
Carlos Fonseca ◽  
...  

AbstractActivity pattern studies can help explain the coexistence of competing species. Between 2001 and 2017 we evaluated the activity pattern overlap of jaguar (Panthera onca), puma (Puma concolor), and their main prey, using camera traps at 17 Amazonian sites in the Greater Madidi-Tambopata Landscape. We used the Kernel density estimation to generate species activity patterns and the overlap between both cats. We then calculated the overlap coefficient (Δ) by carrying out 10,000 bootstraps (95%). Both cats were active 24 h a day. The puma has higher nocturnal activity (57%), whilst jaguar activity is split almost equally between night (53%) and day (47%). We did not find temporal segregation between jaguars and pumas, which showed similar activity patterns with a high overlapping coefficient (Δ4 = 0.84; 0.78–0.91). Also, we did not find significant differences between Male and Female activity patterns for both species (X2 = 0.50, gl = 1, P = 0.47). Moreover, both cats had significant overlap with the activity patterns of their main prey. Temporal segregation was not detected in any of our study sites within the Greater Madidi-Tambopata Landscape, suggesting that in this region, these predators employ other mechanisms to avoid competition.


2019 ◽  
Vol 71 ◽  
pp. 558-568 ◽  
Author(s):  
José A. Montoya ◽  
Gudelia Figueroa P. ◽  
David González-Sánchez

2018 ◽  
Vol 17 (1) ◽  
pp. 56-63
Author(s):  
O. V. Diachenko ◽  
M. A. Kardapolova

The paper considers improvement of physic-mechanical and operational properties of adhesive coatings after laser infusion with additional alloying В4С, ТаВ and МоВ. Influence of the laser infusion with additional alloying on structure, microhardness and wear-resistance of adhesive coatings of the Fe–Cr–B –Si system has been studied in the paper. While increasing a laser beam velocity microstructure is changed from equilibrium to quasi-eutectic. Presence of molybdenum boride and tantalum increases sensitivity of the coating to specific features of laser remelting. In both cases heat exchange conditions have been changed, a number of iron and chromium borides has been increased and due to this molybdenum and tantalum have been partially passing to free state that contributes to a disintegration of structural components. While introducing solid particles B4C into a coating they are dissolved in an iron matrix while being heated by a laser beam and under cooling they are isolated in the form of separated Fe an Cr boride inclusions. Laser infusion and alloying increase coating wear-resistance. Load increase from 30 to 70 Н improves coating wear resistance averagely by 15–26 % and wear resistance of non-alloyed coatings is improved by 26–43 %. An increase of melting rate and laser spot diameter does not exert significant influence on wear but an increase in overlapping coefficient leads to reduction of coating wear. Presence of solid particles in a coating and an increase in rate of melting by laser beam reduce coating wear resistance. Such rather complicated dependence of coating wear rate on conditions of laser melting and wearing process is due to a complex of structural and phase transformations which have contributed to formation of secondary solid inclusions and increased microhardness.


Sign in / Sign up

Export Citation Format

Share Document