profile fitting
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 30)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xushan Zhao ◽  
Yuanxun Wang ◽  
Haiou Zhang ◽  
Runsheng Li ◽  
Xi Chen ◽  
...  

Purpose This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology positively supports the overlapping deposited in multi-beads between layers while actively assisting the subsequent layer's deposition in the wire and arc additive manufacturing (WAAM). Hybrid-deposited and micro-rolling (HDMR) additive manufacturing (AM) technology can smooth the weld bead for improved surface quality. However, the micro-rolling process will change the weld bead profile fitting curve to affect the overlapping coefficient. Design/methodology/approach Weld bead contours for WAAM and HDMR were extracted using line lasers. A comparison of bead profile curves was conducted to determine the influence law of micro-zone rolling on the welding bead contour and fitting curve. Aiming at the optimized overlapping coefficient of weld bead in HDMR AM, the optimal HDMR overlapping coefficient curve was proposed which varies with the reduction based on the best surface flatness. The mathematical model for overlapping in HDMR was checked by comparing the HDMR weld bead contours under different rolling reductions. Findings A fitting function of the bead forming by HDMR AM was proposed based on the law of conservation of mass. The change rule of the HDMR weld bead overlapping spacing with the degree of weld bead rolling reduction was generated using the flat-top transition calculation for this model. Considering the damming-up impact of the first bead, the overlapping coefficient was examined for its effect on layer surface flatness. Originality/value Using the predicted overlapping model, the optimal overlapping coefficients for different rolling reductions can be achieved without experiments. These conclusions can encourage the development of HDMR technology.


2022 ◽  
Vol 258 (1) ◽  
pp. 11
Author(s):  
J. R. Weaver ◽  
O. B. Kauffmann ◽  
O. Ilbert ◽  
H. J. McCracken ◽  
A. Moneti ◽  
...  

Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer, which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS).


2021 ◽  
Vol 921 (2) ◽  
pp. 119
Author(s):  
Dai Ishita ◽  
Toru Misawa ◽  
Daisuke Itoh ◽  
Jane C. Charlton ◽  
Michael Eracleous

2021 ◽  
Author(s):  
Zhanshuo Liu ◽  
Xiufen Ye ◽  
Shuxiang Guo ◽  
Huiming Xing ◽  
Zengchao Hao ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1537
Author(s):  
David L. Burnett ◽  
Christopher D. Vincent ◽  
Jasmine A. Clayton ◽  
Reza J. Kashtiban ◽  
Richard I. Walton

Iridium-containing NaTaO3 is produced using a one-step hydrothermal crystallisation from Ta2O5 and IrCl3 in an aqueous solution of 10 M NaOH in 40 vol% H2O2 heated at 240 °C. Although a nominal replacement of 50% of Ta by Ir was attempted, the amount of Ir included in the perovskite oxide was only up to 15 mol%. The materials are formed as crystalline powders comprising cube-shaped crystallites around 100 nm in edge length, as seen by scanning transmission electron microscopy. Energy dispersive X-ray mapping shows an even dispersion of Ir through the crystallites. Profile fitting of powder X-ray diffraction (XRD) shows expanded unit cell volumes (orthorhombic space group Pbnm) compared to the parent NaTaO3, while XANES spectroscopy at the Ir LIII-edge reveals that the highest Ir-content materials contain Ir4+. The inclusion of Ir4+ into the perovskite by replacement of Ta5+ implies the presence of charge-balancing defects and upon heat treatment the iridium is extruded from the perovskite at around 600 C in air, with the presence of metallic iridium seen by in situ powder XRD. The highest Ir-content material was loaded with Pt and examined for photocatalytic evolution of H2 from aqueous methanol. Compared to the parent NaTaO3, the Ir-substituted material shows a more than ten-fold enhancement of hydrogen yield with a significant proportion ascribed to visible light absorption.


2021 ◽  
Vol 11 (11) ◽  
pp. 5219
Author(s):  
Yosuke Sakurai ◽  
Hirotaka Sato ◽  
Nozomu Adachi ◽  
Satoshi Morooka ◽  
Yoshikazu Todaka ◽  
...  

As a new method for evaluating single crystals and oligocrystals, pulsed neutron Bragg-dip transmission analysis/imaging method is being developed. In this study, a single Bragg-dip profile-fitting analysis method was newly developed, and applied for analyzing detailed inner information in a crystalline grain position-dependently. In the method, the spectrum profile of a single Bragg-dip is analyzed at each position over a grain. As a result, it is expected that changes in crystal orientation, mosaic spread angle and thickness of a perfect crystal can be evaluated from the wavelength, the width and the integrated intensity of the Bragg-dip, respectively. For confirming this effectiveness, the method was applied to experimental data of position-dependent Bragg-dip transmission spectra of a Si-steel plate consisting of oligocrystals. As a result, inner information of multiple crystalline grains could be visualized and evaluated. The small change in crystal orientation in a grain, about 0.4°, could be observed by imaging the Bragg-dip wavelengths. By imaging the Bragg-dip widths, both another grain and mosaic block in a grain were detected. Furthermore, imaging results of the integrated intensities of Bragg-dips were consistent with the results of Bragg-dip width imaging. These small crystallographic changes have not been observed and visualized by previous Bragg-dip analysis methods.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 613
Author(s):  
Zakia Alhashem ◽  
Chawki Awada ◽  
Faheem Ahmed ◽  
Ashraf H. Farha

In the current work, the nanocomposites that consist chiefly of three components—α-Fe2O3, NiO and Ni2FeO4, in two different ratios 2:2:1 (FNN-221) and 2:1:1 (FNN-211), respectively—were produced. The synthesis was done in two steps by following the chemical co-precipitation and mechanical ball-milling route. The presence of individual phase was identified from the XRD data without the detection of any additional impurities. The phase fraction of each component estimated from the profile fitting of XRD patterns were found to be 41.2%, 39.7%, 19.1% in FNN-221 sample and 49.5%, 26.4%, 24.1% for FNN-211 sample, respectively, which were consistent with the experimental values. The total magnetization at 300 K was obtained to be 13.41 emu/g and 10.95 emu/g for FNN-221 and FNN-211 samples, respectively. In FNN-211 compound the zero field coercivity (HC) expanded towards the higher field values thereby signifying the exchange bias behavior. Furthermore, the exchange bias field (Hex) for FNN-211 was obtained as 35.1 Oe.


Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 137
Author(s):  
Jing Gao ◽  
Dongdong Jiao ◽  
Xue Deng ◽  
Jie Liu ◽  
Linbo Zhang ◽  
...  

A polarization-insensitive recirculating delayed self-heterodyne method (PI-RDSHM) is proposed and demonstrated for the precise measurement of sub-kilohertz laser linewidths. By a unique combination of Faraday rotator mirrors (FRMs) in an interferometer, the polarization-induced fading is effectively reduced without any active polarization control. This passive polarization-insensitive operation is theoretically analyzed and experimentally verified. Benefited from the recirculating mechanism, a series of stable beat spectra with different delay times can be measured simultaneously without changing the length of delay fiber. Based on Voigt profile fitting of high-order beat spectra, the average Lorentzian linewidth of the laser is obtained. The PI-RDSHM has advantages of polarization insensitivity, high resolution, and less statistical error, providing an effective tool for accurate measurement of sub-kilohertz laser linewidth.


Author(s):  
Michael J Smith ◽  
Nikhil Arora ◽  
Connor Stone ◽  
Stéphane Courteau ◽  
James E Geach

Abstract We present “Pix2Prof”, a deep learning model that can eliminate any manual steps taken when measuring galaxy profiles. We argue that a galaxy profile of any sort is conceptually similar to a natural language image caption. This idea allows us to leverage image captioning methods from the field of natural language processing, and so we design Pix2Prof as a float sequence “captioning” model suitable for galaxy profile inference. We demonstrate the technique by approximating a galaxy surface brightness (SB) profile fitting method that contains several manual steps. Pix2Prof processes ∼1 image per second on an Intel Xeon E5-2650 v3 CPU, improving on the speed of the manual interactive method by more than two orders of magnitude. Crucially, Pix2Prof requires no manual interaction, and since galaxy profile estimation is an embarrassingly parallel problem, we can further increase the throughput by running many Pix2Prof instances simultaneously. In perspective, Pix2Prof would take under an hour to infer profiles for 105 galaxies on a single NVIDIA DGX-2 system. A single human expert would take approximately two years to complete the same task. Automated methodology such as this will accelerate the analysis of the next generation of large area sky surveys expected to yield hundreds of millions of targets. In such instances, all manual approaches – even those involving a large number of experts – will be impractical.


2021 ◽  
Vol 54 (1) ◽  
pp. 217-227
Author(s):  
Daniel Van Opdenbosch ◽  
Maria Haslböck ◽  
Cordt Zollfrank

Recently, the authors reported on the development of crystallinity in mixed-tacticity polyhydroxybutyrates. Comparable values reported in the literature vary depending on the manner of determination, the discrepancies being partially attributable to scattering from paracrystalline portions of the material. These portions can be qualified by peak profile fitting or quantified by allocation of scattered X-ray intensities. However, the latter requires a good quality of the former, which in turn must additionally account for peak broadening inherent in the measurement setup, and due to limited crystallite sizes and the possible presence of microstrain. Since broadening due to microstrain and paracrystalline order both scale with scattering vector, they are easily confounded. In this work, a method to directionally discern these two influences on the peak shape in a Rietveld refinement is presented. Allocating intensities to amorphous, bulk and paracrystalline portions with changing tactic disturbance provided internal validations of the obtained directional numbers. In addition, the correlation between obtained thermal factors and Young's moduli, determined in earlier work, is discussed.


Sign in / Sign up

Export Citation Format

Share Document