curvature constraint
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 11 (11) ◽  
pp. 4959
Author(s):  
Peng Guo ◽  
Yijie Wu ◽  
Guang Yang ◽  
Zhebin Shen ◽  
Haorong Zhang ◽  
...  

The curvature of the NURBS curve varies along its trajectory, therefore, the commonly used feedrate-planning method, which based on the acceleration/deceleration (Acc/Dec) model, is difficult to be directly applied in CNC machining of a NURBS curve. To address this problem, a feedrate-planning method based on the critical constraint curve of the feedrate (CCC) is proposed. Firstly, the problems of existing feedrate-planning methods and their causes are analyzed. Secondly, by considering both the curvature constraint and the kinematic constraint during the Acc/Dec process, the concept of CCC which represents the relationship between the critical feedrate-constraint value and the arc length is proposed. Then the CCC of a NURBS curve is constructed, and it has a concise expression conforming to the Acc/Dec model. Finally, a feedrate-planning method of a NURBS curve based on CCC and the Acc/Dec model is established. In the simulation, a comparison between the proposed method and the conventional feedrate-planning method is performed, and the results show that, the proposed method can reduce the Acc/Dec time by over 40%, while little computational burden being added. The machining experimental results validate the real-time performance and stability of the proposed method, and also the machining quality is verified. The proposed method offers an effective feedrate-planning strategy for a NURBS curve in CNC machining.


Author(s):  
Zhen Li ◽  
Jenny Dankelman ◽  
Elena De Momi

Abstract Purpose Planning a safe path for flexible catheters is one of the major challenges of endovascular catheterization. State-of-the-art methods rarely consider the catheter curvature constraint and reduced computational time of path planning which guarantees the possibility to re-plan the path during the actual operation. Methods In this manuscript, we propose a fast two-phase path planning approach under the robot curvature constraint. Firstly, the vascular structure is extracted and represented by vascular centerlines and corresponding vascular radii. Then, the path is searched along the vascular centerline using breadth first search (BFS) strategy and locally optimized via the genetic algorithm (GA) to satisfy the robot curvature constraint. This approach (BFS-GA) is able to respect the robot curvature constraint while keeping it close to the centerlines as much as possible. We can also reduce the optimization search space and perform parallel optimization to shorten the computational time. Results We demonstrate the method’s high efficiency in two-dimensional and three-dimensional space scenarios. The results showed the planner’s ability to satisfy the robot curvature constraint while keeping low computational time cost compared with sampling-based methods. Path replanning in femoral arteries can reach an updating frequency at $$6.4\pm 2.3$$ 6.4 ± 2.3 Hz. Conclusion The presented work is suited for surgical procedures demanding satisfying curvature constraints while optimizing specified criteria. It is also applicable for curvature constrained robots in narrow passages.


2020 ◽  
Vol 10 (4) ◽  
pp. 1388 ◽  
Author(s):  
Moning Zhu ◽  
Xuehua Zhang ◽  
He Luo ◽  
Guoqiang Wang ◽  
Binbin Zhang

In the last decade, with the wide application of UAVs in post-earthquake relief operations, the images and videos of affected areas obtained by UAVs immediately after a seismic event have become an important source of information for post-earthquake rapid assessment, which is crucial for initiating effective emergency response operations. In this study, we first consider the kinematic constraints of UAV and the Dubins curve is introduced to fit the shortest flyable path for each UAV that meets the maximum curvature constraint. Second, based on the actual requirements of post-earthquake rapid assessment, heterogeneous UAVs, multi-depot launching, and targets allowed access to multiple times, the paper proposes a multi-UAV rapid-assessment routing problem (MURARP). The MURARP is modeled as the multi-depot revisit-allowed Dubins TOP with variable profit (MD-RDTOP-VP) which is a variant of the team orienteering problem (TOP). Third, a hybrid genetic simulated annealing (HGSA) algorithm is developed to solve the problem. The result of numerical experiments shows that the HGSA algorithm can quickly plan flyable paths for heterogeneous UAVs to maximize the expected profit. Finally, a case study based on real data of the 2017 Jiuzhaigou earthquake in China shows how the method can be applied in a post-earthquake scenario.


2019 ◽  
Vol 30 (12) ◽  
pp. 125401
Author(s):  
Xiao Xue ◽  
Shusen Zhao ◽  
Yunsong Zhao ◽  
Peng Zhang

2018 ◽  
Vol 8 (11) ◽  
pp. 2144 ◽  
Author(s):  
Pei-Li Kuo ◽  
Chung-Hsun Wang ◽  
Han-Jung Chou ◽  
Jing-Sin Liu

The harmonic potential field of an incompressible nonviscous fluid governed by the Laplace’s Equation has shown its potential for being beneficial to autonomous unmanned vehicles to generate smooth, natural-looking, and predictable paths for obstacle avoidance. The streamlines generated by the boundary value problem of the Laplace’s Equation have explicit, easily computable, or analytic vector fields as the path tangent or robot heading specification without the waypoints and higher order path characteristics. We implemented an obstacle avoidance approach with a focus on curvature constraint for a non-holonomic mobile robot regarded as a particle using curvature-constrained streamlines and streamline changing via pure pursuit. First, we use the potential flow field around a circle to derive three primitive curvature-constrained paths to avoid single obstacles. Furthermore, the pure pursuit controller is implemented to achieve a smooth transition between the streamline paths in the environment with multiple obstacles. In addition to comparative simulations, a proof of concept experiment implemented on a two-wheel driving mobile robot with range sensors validates the practical usefulness of the integrated system that is able to navigate smoothly and safely among multiple cylinder obstacles. The computational requirement of the obstacle avoidance system takes advantage of an a priori selection of fast computing primitive streamline paths, thus, making the system able to generate online a feasible path with a lower maximum curvature that does not violate the curvature constraint.


Sign in / Sign up

Export Citation Format

Share Document