twitch interpolation
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 0)

2019 ◽  
Author(s):  
Lindsay R. P. Garmirian ◽  
Julius P. A. Dewald ◽  
Ana Maria Acosta

AbstractAfter a stroke, descending drive is impaired due to the loss of corticospinal and corticobulbar projections which causes a reduction in voluntary activation or an inability of the nervous system to activate muscles to their full capacity, which in turn contributes to weakness of the upper extremity. Voluntary activation has not been quantified at specific joints in the upper extremity, in part because directly assessing changes descending drive is difficult. In this study, voluntary activation of elbow and wrist flexors and extensors was assessed in participants with chronic hemiparetic stroke using twitch interpolation. Twitch interpolation uses electrical stimulation to estimate voluntary activation and relies on the principle that there is an inverse relationship between the amplitude of a twitch evoked by a stimulus and the voluntary force output during stimulation (Taylor, 2009). We measured voluntary activation using twitch interpolation as well as maximum voluntary torque (MVT) of the elbow and wrist flexors and extensors in the paretic and non-paretic limb of ten participants post stroke and the dominant and non-dominant limb of 2 control participants. Results show, MVT interlimb differences were significantly greater for stroke participants compared to control, across muscle groups (p≤0.005). For stroke participants, MVT interlimb differences were significantly greater at the wrist compared to the elbow (P=0.003). Voluntary activation was significantly less in the paretic limb compared to the non-paretic, dominant and non-dominant limbs, across participants and muscle groups (p<0.005 for all four muscle groups). For the stroke participants, the voluntary activation interlimb difference was significantly greater for the wrist muscles compared to the elbow muscles (p<0.005). There was a significant positive correlation (r = 0.39, P = .022) between each participant’s impairment level, as measured by a hand specific subscore of the Fugl-Meyer Assessment, and the wrist extensor voluntary activation in the paretic limb but the relationship was not significant for the other muscle groups.


Respiration ◽  
2019 ◽  
Vol 98 (4) ◽  
pp. 283-293
Author(s):  
Jens Spiesshoefer ◽  
Carolin Henke ◽  
Simon Herkenrath ◽  
Winfried Randerath ◽  
Tobias Brix ◽  
...  

2018 ◽  
Vol 43 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Carey L. Simpson ◽  
Rowan R. Smart ◽  
Dylan E.E. Melady ◽  
Jennifer M. Jakobi

Contraction velocity of a muscle tendon unit (MTU) is dependent upon the interrelationship between fascicles shortening and the tendon lengthening. Altering the mechanical properties of these tissues through a perturbation such as static stretching slows force generation. Females, who have inherently greater compliance compared with males, have slower velocity of MTU components. The addition of a static stretch might further exacerbate this sex difference. The purpose of this study was to investigate the velocity of fascicle shortening and tendon lengthening in males and females during isometric maximal voluntary contraction (MVC) of the plantar flexors prior to and following an acute static stretch. The MTU was imaged with ultrasound and voluntary activation tested with twitch interpolation for the 5-s plantar flexion MVC, which proceeded and followed an acute stretch. For the 3-min stretch the ankle was passively rotated to maximal dorsi-flexion. The males were stronger (128.71 ± 7.88 Nm) than the females (89.92 ± 4.70 Nm) but voluntary activation did not differ. Tendon lengthening velocity (p = 0.001) and fascicle shortening velocity (p = 0.01) were faster in males than females. Tendon velocity was positively and significantly correlated with fascicle velocity, (r2 = 0.307, p = 0.02). Although sex was significant as a predictor (p = 0.05) time was not independently significant. Thus, stretch did not alter this relationship in either sex (p = 0.6). The velocity of the individual components of the MTU is slower in females when compared with males; however, acute stretch does not alter the relationship between these components in males or females.


2016 ◽  
Vol 7 ◽  
Author(s):  
Mathieu Raux ◽  
Alexandre Demoule ◽  
Stefania Redolfi ◽  
Capucine Morelot-Panzini ◽  
Thomas Similowski

2016 ◽  
Vol 28 ◽  
pp. 31-36 ◽  
Author(s):  
Nicola Angelo Maffiuletti ◽  
Marco Barbero ◽  
Corrado Cescon ◽  
Ron Clijsen ◽  
Matteo Beretta-Piccoli ◽  
...  

2013 ◽  
Vol 591 (5) ◽  
pp. 1373-1383 ◽  
Author(s):  
S. C. Gandevia ◽  
C. J. McNeil ◽  
T. J. Carroll ◽  
J. L. Taylor

2010 ◽  
Vol 108 (3) ◽  
pp. 655-661 ◽  
Author(s):  
Cliff S. Klein ◽  
Lillian B. Peterson ◽  
Sean Ferrell ◽  
Christine K. Thomas

Few studies have quantified lower limb muscle activity over 24 h using electromyographic signals (EMG). None have described the changes in EMG duration and intensity when data are analyzed with different thresholds. Continuous bilateral EMG recordings were made from vastus lateralis (VL) in 10 subjects (20–48 yr) for 24 h. Before and after this recording, voluntary quadriceps forces and VL EMG at 25%, 50%, 75%, and 100% of the maximal voluntary contraction (MVC), percentage voluntary activation (twitch interpolation), and compound action potentials (M-waves) were recorded. Offline, the 24-h EMG integrals (IEMG, 10-ms time constant) were normalized to the MVC IEMG. Total EMG duration and mean IEMG ranged from 1–3 h and 3.2–12.1% MVC, respectively, when the data were analyzed using the baseline (+3 SD) as threshold. When analysis was done with progressively higher thresholds, from baseline up to 4% MVC, the total EMG duration declined curvilinearly. In some cases the decline in duration was 50–60% for a 1% MVC threshold increment. The mean 24-h IEMG increased by 1.5–2% MVC for each 1% MVC threshold increment. Hence, a small change in the analysis threshold may result in large changes in 24-h EMG duration but moderate changes in mean IEMG. Our findings suggest that VL was active for a short amount of time and at low intensities over 24 h.


2009 ◽  
Vol 19 (4) ◽  
pp. 584-590 ◽  
Author(s):  
Janet L. Taylor ◽  
Henrik Baare Olsen ◽  
Gisela Sjøgaard ◽  
Karen Søgaard

Sign in / Sign up

Export Citation Format

Share Document