ocean loading
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Rezkia Dewi Andajani ◽  
Takeshi Tsuji ◽  
Roel Snieder ◽  
Tatsunori Ikeda

Abstract Earth’s crust responds to perturbations from various environmental factors. To evaluate this response, seismic velocity changes offer an indirect diagnostic, especially where velocity can be monitored on an ongoing basis from ambient seismic noise. Investigating the connection between the seismic velocity changes and external perturbations could be useful for characterizing dynamic activities in the crust. The seismic velocity is known to be sensitive to variations in meteorological signals such as temperature, snow, and precipitation as well as changes in sea level. Among these perturbations, the impact of variations in sea level on velocity changes inferred from seismic interferometry of ambient noise is not well known. This study investigates the influence of the ocean in a 3-year record of ambient noise seismic velocity monitoring in the Chugoku and Shikoku regions of southwest Japan. First, we applied a bandpass filter to determine the optimal period band for discriminating among different influences on seismic velocity. Then, we applied a regression analysis between the proximity of seismic station pairs to the coast and the ocean influence, as indicated by the correlation of sea level to seismic velocity changes between pairs of stations. Our study suggests that for periods between 0.0036 to 0.01 cycle/day (100–274 days), the ocean’s influence on seismic velocity decreases with increasing distance of station pairs from the coast. The increasing sea level deforms the ocean floor, affecting the stress in the adjacent coast. The stress change induced by the ocean loading may extend at least dozens of kilometers from the coast. The correlation between sea level and inland seismic velocity changes are negative or positive. Although it is difficult to clearly interpret the correlation based on simple model, they could depend on the in situ local stress, orientation of dominant crack, and hydraulic conductivity. Our study shows that seismic monitoring may be useful for evaluating the perturbation in the crust associated with an external load.


2021 ◽  
Author(s):  
Adrian Topham ◽  
Milind Pandit ◽  
Zhijun Du ◽  
Guillermo Sobreviela ◽  
Douglas Young ◽  
...  

<p>A vibrating beam MEMS gravimeter with an Allan deviation of 9 μGal for a 1000 s integration time, a noise floor of 10 μGal/√Hz, and measurement over the full ±1 g dynamic range (1 g = 9.81 ms<sup>−2</sup>) is presented. In addition to a direct digital signal output, the sensor system possesses built-in tilt compensation capabilities and a 2-stage temperature control that is stable to 500 µK.</p><p>Instances of Earth tidal tracking and ground motion records corresponding to several teleseismic events are demonstrated. The output response from tracking of the Earth tides is compared to the data obtained from the software TSoft and a statistical correlation R of 0.92 is obtained between the conditioned MEMS dataset over a period of ~4 days and the predicted Earth tides model from TSoft following correction for ocean loading effects.</p><p>The device also recorded the ground motion from several teleseismic events during the testing period, a prominent event among them is the 6.2 M<sub>L</sub> earthquake near to Petrinja, Croatia, which occurred on December 29<sup>th</sup>, 2020. The MEMS sensor has demonstrated excellent performance as a long-period seismometer and the response is compared to the seismograms recorded by two nearby BGS broadband seismic stations. </p><p>Advances in microgravity sensor detection capability will be shown to match feasibility modelling for void detection. Results demonstrate that a vibrating beam MEMS accelerometer can be used for measurements requiring high levels of stability and resolution with wider implications for precision measurement. Gravimetry use to warn of imminent failures due to a range of shallow hazards include assessing damage in the built environment, transmission losses in utilities, territory breach and storage containment loss.</p>


2021 ◽  
Author(s):  
Ezequiel D. Antokoletz ◽  
Hartmut Wziontek ◽  
Henryk Dobslaw ◽  
Claudia N. Tocho

<p>In modelling of atmospheric loading effects in terrestrial gravimetry by numerical weather models, often the Inverse Barometer (IB) hypothesis is applied over oceans. This simple assumption implies an isostatic compensation of the oceans to atmospheric pressure changes, causing no net deformation of the seafloor. However, the IB hypothesis is in general not valid for periods shorter than a few weeks and, consequently, the ocean dynamics cannot be neglected. In particular, for the correction of high precision gravity time series as e.g. obtained from superconducting gravimeters, it is essential to model even small contributions in order to separate different effects. When including non-tidal ocean loading effects from ocean circulation models into atmospheric models, special care has to be taken of the interface between the atmosphere and the oceans in order not to account contributions twice.</p><p>The established approach for modelling non-tidal ocean loading effects is revised in this study. When combining it with the modelling of atmospheric effects for terrestrial gravimetry, it is shown that Newtonian attraction contributions from the atmosphere may be accounted twice. To solve this problem, an alternative is proposed and tested which further reduces the variability of the gravity residuals, as shown for a set of four superconducting gravity meters globally distributed.</p><p>The improvement is achieved by a different treatment of the Newtonian attraction component related to the IB effect. Discrepancies up to the μGal level are demonstrated, depending on the location of the station. With several simplifications, the approach can be made operational and included in existing services, further improving the compatibility of terrestrial gravity time series with satellite gravity observations.</p>


2021 ◽  
Vol 126 (3) ◽  
Author(s):  
Jianghui Geng ◽  
Shaoming Xin ◽  
Simon D. P. Williams ◽  
Weiping Jiang

2021 ◽  
Vol 13 (2) ◽  
pp. 279 ◽  
Author(s):  
Maosheng Zhou ◽  
Xin Liu ◽  
Jiajia Yuan ◽  
Xin Jin ◽  
Yupeng Niu ◽  
...  

The classical harmonic analysis (CHA) method only can be used to obtain the harmonic constants (amplitude and phase) of ocean tide loading displacement (OTLD). In fact, there are significant seasonal variations in the harmonic constants of OTLD. A moving harmonic analysis (MHA) method is proposed, which can effectively capture the seasonal variation of OTLD parameters. Based on 5 years of kinematic coordinate time series in direction U of six Global Positioning System (GPS) stations in Hong Kong, the MHA method is used to explore the seasonal variation of the OTLD parameters of the 6 principal tidal constituents (M2, S2, N2, K1, O1, Q1). The influence of mass loading on the seasonal variation of OTLD parameters is analyzed. The results show that there are obviously seasonal variations in OTLD parameters of the 6 principal tidal constituents in Hong Kong. The OTLD’s amplitude’s changes of the 6 principal tidal constituents are around 4–25.1% and the oscillation ranges of OTLD’s phase parameters vary from 8.8° to 20.4°. Among the seasonal variations of OTLD parameters, the annual signal, the semi-annual signal, and the ter-annual signal are the most significant. By analyzing the influence of atmospheric loading on the seasonal variation of OTLD parameters, it is found that atmospheric loading has certain contribution to the seasonal variation of OTLD parameters. Hydrological loading and non-tidal ocean loading have little influence on the seasonal variation of OTLD parameters.


2020 ◽  
Vol 110 (6) ◽  
pp. 3196-3210
Author(s):  
Vladislav G. Martynov ◽  
Luciana Astiz ◽  
Debi Kilb ◽  
Frank L. Vernon

ABSTRACT We explore the detectability of M2 tidal tilt in the western part of the United States, using seismic velocity data from 40 stations in the EarthScope Transportable Array (TA) network. We augment these data with data from two additional stations both collocated at the Piñon Flats Observatory (PFO) in southern California (networks TA and Incorporated Research Institutions for Seismology [IRIS] International Deployment of Accelerometers [IDA]). We find a good agreement between the acceleration-tilt derived from the TA seismic data with the theoretical model (body Earth and ocean loading for M2). These results are also consistent with prior studies using borehole tiltmeters operated at PFO (Wyatt and Berger, 1980; Wyatt et al., 1982). We find statistically significant M2 tilt anomaly responses that correlate with large lateral variations in rock properties in Yellowstone National Park, which stem from volcanic sources in the region. We also examined deviations in the M2 tidal tilt mode in regions with other geological features including the Cascades volcanic range and a large plutonic body located in Idaho and eastern Oregon. Of these, only the Cascadia data show evidence of lateral variances of elastic properties, similar to that of the Yellowstone Caldera (YC). We conclude that tilt measurements from seismic noise data can successfully identify relatively large structural changes in elastic properties of the crustal Earth (e.g., the YC) and significant change in the elastic properties (e.g., Cascadia subduction zone). But, when the features are smaller and/or have a more muted variation in the elastic properties (e.g., the plutonic body in Idaho and eastern Oregon), the induced changes in the tilt values are too small to be detected using TA data.


2020 ◽  
Vol 222 (2) ◽  
pp. 1178-1194
Author(s):  
Benjamin Fernando ◽  
Kuangdai Leng ◽  
Tarje Nissen-Meyer

SUMMARY We present a new approach to simulate high-frequency seismic wave propagation in and under the oceans. Based upon AxiSEM3D, this method supports a fluid ocean layer, with associated water-depth phases and seafloor topography (bathymetry). The computational efficiency and flexibility of this formulation means that high-frequency calculations may be carried out with relatively light computational loads. A validation of the fluid ocean implementation is shown, as is an evaluation of the oft-used ocean loading formulation, which we find breaks down at longer periods than was previously believed. An initial consideration of the effects of seafloor bathymetry on seismic wave propagation is also given, wherein we find that the surface waveforms are significantly modified in both amplitude and duration. When compared to observed data from isolated island stations in the Pacific, synthetics which include a global ocean and seafloor topography appear to more closely match the observed waveform features than synthetics generated from a model with topography on the solid surface alone. We envisage that such a method will be of use in understanding the new and exciting ocean-bottom and floating seismometer data sets now being regularly collected.


2020 ◽  
Author(s):  
Hiroki Goto ◽  
Mituhiko Sugihara ◽  
Yuji Nishi ◽  
Hiroshi Ikeda

<p>Estimation of aquifer hydraulic properties is necessary for predicting groundwater flow and hence managing groundwater resources. Analysis of tide-induced groundwater table fluctuations in unconfined aquifers is one of the methods to estimate aquifer properties. Changes in groundwater level affect surface gravity. Consequently, surface gravity in coastal regions is expected to fluctuate due to the groundwater table fluctuations and is potentially useful for estimating aquifer properties. Moreover, gravity measurements are sensitive to mass redistribution around the observation location and therefore are useful for estimating the storage coefficient of an aquifer. In this study, surface gravity and unconfined groundwater level were measured continuously near the coast of Japan to observe gravity fluctuations due to the tide-induced groundwater table fluctuations. Groundwater level measured in two wells at 60 and 90 m distances from the coastline fluctuated in response to ocean tides. Two superconducting gravimeters (SGs) were installed at 70 and 80 m distances from the coastline and at an elevation of 8 m. After taking the difference between gravity values recorded with the two SGs and then correcting the gravity difference for ocean loading effects, diurnal and semi-diurnal gravity fluctuations, which are possibly due to tide-induced groundwater table fluctuations, were recognized. These results suggest that gravity monitoring with two SGs at different distances from the coastline can be useful for observing gravity fluctuations due to tide-induced groundwater table fluctuations and possibly for estimating aquifer hydraulic properties.</p>


2019 ◽  
Vol 629 ◽  
pp. A132 ◽  
Author(s):  
P. Auclair-Desrotour ◽  
J. Leconte ◽  
E. Bolmont ◽  
S. Mathis

Context. Eccentricity tides generate a torque that can drive an ocean planet towards asynchronous rotation states of equilibrium when enhanced by resonances associated with the oceanic tidal modes. Aims. We investigate the impact of eccentricity tides on the rotation of rocky planets hosting a thin uniform ocean and orbiting cool dwarf stars such as TRAPPIST-1, with orbital periods ~1−10 days. Methods. Combining the linear theory of oceanic tides in the shallow water approximation with the Andrade model for the solid part of the planet, we developed a global model including the coupling effects of ocean loading, self-attraction, and deformation of the solid regions. From this model we derive analytic solutions for the tidal Love numbers and torque exerted on the planet. These solutions are used with realistic values of parameters provided by advanced models of the internal structure and tidal oscillations of solid bodies to explore the parameter space both analytically and numerically. Results. Our model allows us to fully characterise the frequency-resonant tidal response of the planet, and particularly the features of resonances associated with the oceanic tidal modes (eigenfrequencies, resulting maxima of the tidal torque, and Love numbers) as functions of the planet parameters (mass, radius, Andrade parameters, ocean depth, and Rayleigh drag frequency). Resonances associated with the oceanic tide decrease the critical eccentricity beyond which asynchronous rotation states distinct from the usual spin-orbit resonances can exist. We provide an estimation and scaling laws for this critical eccentricity, which is found to be lowered by roughly one order of magnitude, switching from ~0.3 to ~0.06 in typical cases and to ~0.01 in extremal ones.


Sign in / Sign up

Export Citation Format

Share Document