varieties of lattices
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Florian Eisele

Abstract Let ( K , 𝒪 , k ) {(K,\mathcal{O},k)} be a p-modular system with k algebraically closed and 𝒪 {\mathcal{O}} unramified, and let Λ be an 𝒪 {\mathcal{O}} -order in a separable K-algebra. We call a Λ-lattice L rigid if Ext Λ 1 ⁡ ( L , L ) = 0 {{\operatorname{Ext}}^{1}_{\Lambda}(L,L)=0} , in analogy with the definition of rigid modules over a finite-dimensional algebra. By partitioning the Λ-lattices of a given dimension into “varieties of lattices”, we show that there are only finitely many rigid Λ-lattices L of any given dimension. As a consequence we show that if the first Hochschild cohomology of Λ vanishes, then the Picard group and the outer automorphism group of Λ are finite. In particular, the Picard groups of blocks of finite groups defined over 𝒪 {\mathcal{O}} are always finite.


2012 ◽  
Vol 87 (2) ◽  
pp. 326-338 ◽  
Author(s):  
GÁBOR CZÉDLI ◽  
EMIL W. KISS

AbstractThe homomorphic image of a congruence is always a tolerance (relation) but, within a given variety, a tolerance is not necessarily obtained this way. By a Maltsev-like condition, we characterise varieties whose tolerances are homomorphic images of their congruences (TImC). As corollaries, we prove that the variety of semilattices, all varieties of lattices, and all varieties of unary algebras have TImC. We show that a congruence n-permutable variety has TImC if and only if it is congruence permutable, and construct an idempotent variety with a majority term that fails TImC.


Order ◽  
2011 ◽  
Vol 30 (1) ◽  
pp. 13-38 ◽  
Author(s):  
Luigi Santocanale ◽  
Friedrich Wehrung

2011 ◽  
pp. 409-465
Author(s):  
George Grätzer

2009 ◽  
Vol 16 (03) ◽  
pp. 479-494
Author(s):  
Adam W. Marczak ◽  
Jerzy Płonka

A new construction of algebras called a mapping extension of an algebra is here introduced. The construction yields a generalization of some classical constructions such as the nilpotent extension of an algebra, inflation of a semigroup but also the square extension construction introduced recently for idempotent groupoids. The mapping extension construction is defined for algebras of any fixed type, however nullary operation symbols are here not admitted. It is based on the notion of a retraction and some system of mappings. A mapping extension of a given algebra is constructed as a counterimage algebra by a specially defined retraction. Varieties of algebras satisfying an identity φ(x) ≈ x for a term φ not being a variable (such as varieties of lattices, Boolean algebras, groups and rings) are especially interesting because for such a variety [Formula: see text], all mapping extensions by φ of algebras from [Formula: see text] form an equational class. In the last section, combinatorial properties of the mapping extension construction are considered.


2006 ◽  
Vol 55 (1) ◽  
pp. 67-84 ◽  
Author(s):  
David Robert Wasserman

2004 ◽  
Vol 14 (03) ◽  
pp. 357-387 ◽  
Author(s):  
MARINA SEMENOVA ◽  
FRIEDRICH WEHRUNG

For a partially ordered set P, let Co(P) denote the lattice of all order-convex subsets of P. For a positive integer n, we denote by [Formula: see text] (resp., SUB(n)) the class of all lattices that can be embedded into a lattice of the form [Formula: see text] where <Ti|i∈I> is a family of chains (resp., chains with at most n elements). We prove the following results: (1) Both classes [Formula: see text] and SUB(n), for any positive integer n, are locally finite, finitely based varieties of lattices, and we find finite equational bases of these varieties. (2) The variety [Formula: see text] is the quasivariety join of all the varieties SUB(n), for 1≤n<ω, and it has only countably many subvarieties. We classify these varieties, together with all the finite subdirectly irreducible members of [Formula: see text]. (3) Every finite subdirectly irreducible member of [Formula: see text] is projective within [Formula: see text], and every subquasivariety of [Formula: see text] is a variety.


Sign in / Sign up

Export Citation Format

Share Document