response threshold model
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Annie Wu ◽  
Joseph Giordano ◽  
H. David Mathias ◽  
Arjun Pherwani

Decentralized computational swarms have been used to simulate the workings of insect colonies or hives, often utilizing a response threshold model which underlies agent interaction with dynamic environmental stimuli. Here, we propose a logistics resupply problem in which agents must select from multiple incoming scheduled tasks that generate competing resource demands for workers. This work diverges from previous attempts toward analyzing swarm behaviors by examining relative amounts of stress placed on a multi-agent system in conjunction with two mechanisms of response: variable threshold distribution, or duration level. Further, we demonstrate changes to the general swarm performance’s dependence on paired desynchronization type and schedule design, as the result of varied swarm conditions.





Algorithms ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 70 ◽  
Author(s):  
Jiarui Zhang ◽  
Gang Wang ◽  
Yafei Song

Background: The existing contract net protocol has low overall efficiency during the bidding and release period, and a large amount of redundant information is generated during the negotiation process. Methods: On the basis of an ant colony algorithm, the dynamic response threshold model and the flow of pheromone model were established, then the complete task allocation process was designed. Three experimental settings were simulated under different conditions. Results: When the number of agents was 20 and the maximum load value was L max = 3 , the traffic and run-time of task allocation under the improved contract net protocol decreased. When the number of tasks and L max was fixed, the improved contract net protocol had advantages over the dynamic contract net and classical contract net protocols in terms of both traffic and run-time. Setting up the number of agents, tasks and L max to improve the task allocation under the contract net not only minimizes the number of errors, but also the task completion rate reaches 100%. Conclusions: The improved contract net protocol can reduce the traffic and run-time compared with classical contract net and dynamic contract net protocols. Furthermore, the algorithm can achieve better assignment results and can re-forward all erroneous tasks.







Sign in / Sign up

Export Citation Format

Share Document