exit choice
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
pp. 173
Author(s):  
Mohammed Mahmod Shuaib

Understanding evacuees’ responses to dynamic environmental changes, during an emergency evacuation, is of great importance in determining which aspects are ideal and which aspects should be eliminated or corrected. Evacuees differ in their ability to continually plan escape routes and adapt the routes chosen when they become unsafe owing to moving sources of threat. This is because they have different views and perspectives. The perspectives of evacuees are stochastic and are characterized by a high degree of uncertainty and complexity. To reduce the complexity and control of uncertainty, a model is proposed that can test for variant stochastic representations of evacuees’ perspectives. Two extremely realistic perspectives—the most ideal and the least ideal—are proposed to reasonably limit the range of variance. The success of achieving optimal evacuation is tested when different tendencies towards extreme perspectives are adopted. It is concluded that data toward the most ideal perspectives are capable of demonstrating safer evacuation by reducing the number of simulated burnt agents. This study enables crowd managers and fire safety researchers to test guidance systems as well as configuration of buildings using different perspectives of evacuees.


2021 ◽  
Author(s):  
Toshinari Tanaka ◽  
Masayuki Mizuno
Keyword(s):  

2021 ◽  
Author(s):  
Silvia Arias ◽  
Axel Mossberg ◽  
Daniel Nilsson ◽  
Jonathan Wahlqvist

AbstractComparing results obtained in Virtual Reality to those obtained in physical experiments is key for validation of Virtual Reality as a research method in the field of Human Behavior in Fire. A series of experiments based on similar evacuation scenarios in a high-rise building with evacuation elevators was conducted. The experiments consisted of a physical experiment in a building, and two Virtual Reality experiments in a virtual representation of the same building: one using a Cave Automatic Virtual Environment (CAVE), and one using a head-mounted display (HMD). The data obtained in the HMD experiment is compared to data obtained in the CAVE and physical experiment. The three datasets were compared in terms of pre-evacuation time, noticing escape routes, walking paths, exit choice, waiting times for the elevators and eye-tracking data related to emergency signage. The HMD experiment was able to reproduce the data obtained in the physical experiment in terms of pre-evacuation time and exit choice, but there were large differences with the results from the CAVE experiment. Possible factors affecting the data produced using Virtual Reality are identified, such as spatial orientation and movement in the virtual environment.


Author(s):  
Mengting Liu ◽  
Yafei Wang ◽  
Wei Zhu ◽  
Mengmeng Yin ◽  
Jianchun Zheng
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256523
Author(s):  
Yuchen Wang ◽  
Jianxiao Ma ◽  
Yuhang Liu ◽  
Yingjia Bai ◽  
Le Xu

In the case of a fire, the choice of exit in the highway tunnel is strictly limited by fire location, which seriously affects the evacuation time. A spontaneous or disorderly exit choice might result in a decreased evacuation efficiency and utilization rate of exits. In this paper, we propose a strategy to obtain the optimal exit choice based on fire location during highway tunnel evacuations. In our strategy, first, the vehicle distributions and locations of evacuating occupants are determined in the traffic simulation program VISSIM. The evacuation simulation software BuildingEXODUS is employed to obtain the corresponding parameters of the evacuation process and analyze the impacts of different fire locations on the evacuation time. During the analysis, the optimal productivity statistics (OPS) is selected as the evaluation index. Then, the feature points of the crowding occupants are captured by the fuzzy c-means (FCM) cluster algorithm. Next, based on the feature points, the relationship between the location of the fire and boundary of the optimal exit choice under the optimal OPS is obtained through the polynomial regression model. It is found that the R-squared(R2) and sum of squares for error (SSE) of the polynomial regression model, reflecting the accuracy estimation, are 98.02% and 2.79×10−4, respectively. Moreover, different fire locations impact the evacuation time of tunnel entrance and evacuation passageway. This paper shows that the location of the fire and boundary of optimal exit choice have a negative linear correlation. Taking the fire 110 m away from the evacuation passageway as an example, the OPS of our strategy can be decreased by 35.6% when compared with no strategies. Our proposed strategy could be applied to determine the location of variable evacuation signs to help evacuating occupants make optimal exit choices.


2021 ◽  
Vol 137 ◽  
pp. 105158
Author(s):  
Yan Feng ◽  
Dorine C. Duives ◽  
Serge P. Hoogendoorn

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1353
Author(s):  
Hai Sun ◽  
Lanling Hu ◽  
Wenchi Shou ◽  
Jun Wang

Predicting evacuation patterns is useful in emergency management situations such as an earthquake. To find out how pre-trained individuals interact with one another to achieve their own goal to reach the exit as fast as possible firstly, we investigated urban people’s evacuation behavior under earthquake disaster coditions, established crowd response rules in emergencies, and described the drill strategy and exit familiarity quantitatively through a cellular automata model. By setting different exit familiarity ratios, simulation experiments under different strategies were conducted to predict people’s reactions before an emergency. The corresponding simulation results indicated that the evacuees’ training level could affect a multi-exit zone’s evacuation pattern and clearance time. Their exit choice preferences may disrupt the exit options’ balance, leading to congestion in some of the exits. Secondly, due to people’s rejection of long distances, congestion, and unfamiliar exits, some people would hesitant about the evacuation direction during the evacuation process. This hesitation would also significantly reduce the overall evacuation efficiency. Finally, taking a community in Zhuhai City, China, as an example, put forward the best urban evacuation drill strategy. The quantitative relation between exit familiar level and evacuation efficiency was obtained. The final results showed that the optimized evacuation plan could improve evacuation’s overall efficiency through the self-organization effect. These studies may have some impact on predicting crowd behavior during evacuation and designing the evacuation plan.


Sign in / Sign up

Export Citation Format

Share Document