scattering map
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Jorge Tabanera ◽  
Inés Luque ◽  
Samuel L. Jacob ◽  
Massimiliano Esposito ◽  
Felipe Barra ◽  
...  

Abstract Collisional reservoirs are becoming a major tool for modelling open quantum systems. In their simplest implementation, an external agent switches on, for a given time, the interaction between the system and a specimen from the reservoir. Generically, in this operation the external agent performs work onto the system, preventing thermalization when the reservoir is at equilibrium. One can recover thermalization by considering an autonomous global setup where the reservoir particles colliding with the system possess a kinetic degree of freedom. The drawback is that the corresponding scattering problem is rather involved. Here, we present a formal solution of the problem in one dimension and for flat interaction potentials. The solution is based on the transfer matrix formalism and allows one to explore the symmetries of the resulting scattering map. One of these symmetries is micro-reversibility, which is a condition for thermalization. We then introduce two approximations of the scattering map that preserve these symmetries and, consequently, thermalize the system. These relatively simple approximate solutions constitute models of quantum thermostats and are useful tools to study quantum systems in contact with thermal baths. We illustrate their accuracy in a specific example, showing that both are good approximations of the exact scattering problem even in situations far from equilibrium. Moreover, one of the models consists of the removal of certain coherences plus a very specific randomization of the interaction time. These two features allow one to identify as heat the energy transfer due to switching on and off the interaction. Our results prompt the fundamental question of how to distinguish between heat and work from the statistical properties of the exchange of energy between a system and its surroundings.


2020 ◽  
Vol 378 (2) ◽  
pp. 851-889
Author(s):  
Christopher J. Fewster ◽  
Rainer Verch

Abstract The process of quantum measurement is considered in the algebraic framework of quantum field theory on curved spacetimes. Measurements are carried out on one quantum field theory, the “system”, using another, the “probe”. The measurement process involves a dynamical coupling of “system” and “probe” within a bounded spacetime region. The resulting “coupled theory” determines a scattering map on the uncoupled combination of the “system” and “probe” by reference to natural “in” and “out” spacetime regions. No specific interaction is assumed and all constructions are local and covariant. Given any initial state of the probe in the “in” region, the scattering map determines a completely positive map from “probe” observables in the “out” region to “induced system observables”, thus providing a measurement scheme for the latter. It is shown that the induced system observables may be localized in the causal hull of the interaction coupling region and are typically less sharp than the probe observable, but more sharp than the actual measurement on the coupled theory. Post-selected states conditioned on measurement outcomes are obtained using Davies–Lewis instruments that depend on the initial probe state. Composite measurements involving causally ordered coupling regions are also considered. Provided that the scattering map obeys a causal factorization property, the causally ordered composition of the individual instruments coincides with the composite instrument; in particular, the instruments may be combined in either order if the coupling regions are causally disjoint. This is the central consistency property of the proposed framework. The general concepts and results are illustrated by an example in which both “system” and “probe” are quantized linear scalar fields, coupled by a quadratic interaction term with compact spacetime support. System observables induced by simple probe observables are calculated exactly, for sufficiently weak coupling, and compared with first order perturbation theory.


2020 ◽  
Vol 21 (6) ◽  
pp. 2031-2092
Author(s):  
Fred Alford
Keyword(s):  

2017 ◽  
Vol 14 (6) ◽  
pp. 876-880
Author(s):  
Peng-Bo Wei ◽  
Min Zhang ◽  
Jin-Xing Li ◽  
Yong-Chang Jiao

2016 ◽  
Vol 271 (1) ◽  
pp. 85-106 ◽  
Author(s):  
R.M. Brown ◽  
K.A. Ott ◽  
P.A. Perry

Sign in / Sign up

Export Citation Format

Share Document