existence of minimizers
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Rupert L. Frank ◽  
Phan Thành Nam

AbstractWe revisit the liquid drop model with a general Riesz potential. Our new result is the existence of minimizers for the conjectured optimal range of parameters. We also prove a conditional uniqueness of minimizers and a nonexistence result for heavy nuclei.


Author(s):  
Antoine Hocquet ◽  
Alexander Vogler

AbstractWe are interested in the optimal control problem associated with certain quadratic cost functionals depending on the solution $$X=X^\alpha $$ X = X α of the stochastic mean-field type evolution equation in $${\mathbb {R}}^d$$ R d $$\begin{aligned} dX_t=b(t,X_t,{\mathcal {L}}(X_t),\alpha _t)dt+\sigma (t,X_t,{\mathcal {L}}(X_t),\alpha _t)dW_t\,, \quad X_0\sim \mu (\mu \text { given),}\qquad (1) \end{aligned}$$ d X t = b ( t , X t , L ( X t ) , α t ) d t + σ ( t , X t , L ( X t ) , α t ) d W t , X 0 ∼ μ ( μ given), ( 1 ) under assumptions that enclose a system of FitzHugh–Nagumo neuron networks, and where for practical purposes the control $$\alpha _t$$ α t is deterministic. To do so, we assume that we are given a drift coefficient that satisfies a one-sided Lipschitz condition, and that the dynamics (2) satisfies an almost sure boundedness property of the form $$\pi (X_t)\le 0$$ π ( X t ) ≤ 0 . The mathematical treatment we propose follows the lines of the recent monograph of Carmona and Delarue for similar control problems with Lipschitz coefficients. After addressing the existence of minimizers via a martingale approach, we show a maximum principle for (2), and numerically investigate a gradient algorithm for the approximation of the optimal control.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christoph Langer

Abstract We provide a method for constructing (possibly non-trivial) measures on non-locally compact Polish subspaces of infinite-dimensional separable Banach spaces which, under suitable assumptions, are minimizers of causal variational principles in the non-locally compact setting. Moreover, for non-trivial minimizers the corresponding Euler–Lagrange equations are derived. The method is to exhaust the underlying Banach space by finite-dimensional subspaces and to prove existence of minimizers of the causal variational principle restricted to these finite-dimensional subsets of the Polish space under suitable assumptions on the Lagrangian. This gives rise to a corresponding sequence of minimizers. Restricting the resulting sequence to countably many compact subsets of the Polish space, by considering the resulting diagonal sequence, we are able to construct a regular measure on the Borel algebra over the whole topological space. For continuous Lagrangians of bounded range, it can be shown that, under suitable assumptions, the obtained measure is a (possibly non-trivial) minimizer under variations of compact support. Under additional assumptions, we prove that the constructed measure is a minimizer under variations of finite volume and solves the corresponding Euler–Lagrange equations. Afterwards, we extend our results to continuous Lagrangians vanishing in entropy. Finally, assuming that the obtained measure is locally finite, topological properties of spacetime are worked out and a connection to dimension theory is established.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Andrea Mondino ◽  
Christian Scharrer

Abstract Inspired by previous work of Kusner and Bauer–Kuwert, we prove a strict inequality between the Willmore energies of two surfaces and their connected sum in the context of isoperimetric constraints. Building on previous work by Keller, Mondino and Rivière, our strict inequality leads to existence of minimizers for the isoperimetric constrained Willmore problem in every genus, provided the minimal energy lies strictly below 8 ⁢ π {8\pi} . Besides the geometric interest, such a minimization problem has been studied in the literature as a simplified model in the theory of lipid bilayer cell membranes.


Author(s):  
Dario Mazzoleni ◽  
Berardo Ruffini

AbstractWe study the minimization of a spectral functional made as the sum of the first eigenvalue of the Dirichlet Laplacian and the relative strength of a Riesz-type interaction functional. We show that when the Riesz repulsion strength is below a critical value, existence of minimizers occurs. Then we prove, by means of an expansion analysis, that the ball is a rigid minimizer when the Riesz repulsion is small enough. Eventually we show that for certain regimes of the Riesz repulsion, regular minimizers do not exist.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Qinglan Xia ◽  
Bohan Zhou

Abstract In this article, we consider the (double) minimization problem min ⁡ { P ⁢ ( E ; Ω ) + λ ⁢ W p ⁢ ( E , F ) : E ⊆ Ω , F ⊆ R d , | E ∩ F | = 0 , | E | = | F | = 1 } , \min\{P(E;\Omega)+\lambda W_{p}(E,F):E\subseteq\Omega,\,F\subseteq\mathbb{R}^{d},\,\lvert E\cap F\rvert=0,\,\lvert E\rvert=\lvert F\rvert=1\}, where λ ⩾ 0 \lambda\geqslant 0 , p ⩾ 1 p\geqslant 1 , Ω is a (possibly unbounded) domain in R d \mathbb{R}^{d} , P ⁢ ( E ; Ω ) P(E;\Omega) denotes the relative perimeter of 𝐸 in Ω and W p W_{p} denotes the 𝑝-Wasserstein distance. When Ω is unbounded and d ⩾ 3 d\geqslant 3 , it is an open problem proposed by Buttazzo, Carlier and Laborde in the paper On the Wasserstein distance between mutually singular measures. We prove the existence of minimizers to this problem when the dimension d ⩾ 1 d\geqslant 1 , 1 p + 2 d > 1 \frac{1}{p}+\frac{2}{d}>1 , Ω = R d \Omega=\mathbb{R}^{d} and 𝜆 is sufficiently small.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Sandro Zagatti

<p style='text-indent:20px;'>We study the minimum problem for functionals of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \mathcal{F}(u) = \int_{I} f(x, u(x), u^ \prime(x), u^ {\prime\prime}(x))\,dx, \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the integrand <inline-formula><tex-math id="M1">\begin{document}$ f:I\times \mathbb{R}^m\times \mathbb{R}^m\times \mathbb{R}^m \to \mathbb{R} $\end{document}</tex-math></inline-formula> is not convex in the last variable. We provide an existence result assuming that the lower convex envelope <inline-formula><tex-math id="M2">\begin{document}$ \overline{f} = \overline{f}(x,p,q,\xi) $\end{document}</tex-math></inline-formula> of <inline-formula><tex-math id="M3">\begin{document}$ f $\end{document}</tex-math></inline-formula> with respect to <inline-formula><tex-math id="M4">\begin{document}$ \xi $\end{document}</tex-math></inline-formula> is regular and enjoys a special dependence with respect to the i-th single components <inline-formula><tex-math id="M5">\begin{document}$ p_i, q_i, \xi_i $\end{document}</tex-math></inline-formula> of the vector variables <inline-formula><tex-math id="M6">\begin{document}$ p,q,\xi $\end{document}</tex-math></inline-formula>. More precisely, we assume that it is monotone in <inline-formula><tex-math id="M7">\begin{document}$ p_i $\end{document}</tex-math></inline-formula> and that it satisfies suitable affinity properties with respect to <inline-formula><tex-math id="M8">\begin{document}$ \xi_i $\end{document}</tex-math></inline-formula> on the set <inline-formula><tex-math id="M9">\begin{document}$ \{f&gt; \overline{f}\} $\end{document}</tex-math></inline-formula> and with respect to <inline-formula><tex-math id="M10">\begin{document}$ q_i $\end{document}</tex-math></inline-formula> on the whole domain. We adopt refined versions of the integro-extremality method, extending analogous results already obtained for functionals with first order lagrangians. In addition we show that our hypotheses are nearly optimal, providing in such a way an almost necessary and sufficient condition for the solvability of this class of variational problems.</p>


Sign in / Sign up

Export Citation Format

Share Document