ladakh himalaya
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 2)

MorphoMuseuM ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. e142
Author(s):  
Wasim A. Wazir ◽  
Bastien Mennecart ◽  
Ramesh K. Sehgal ◽  
Navin Kumar ◽  
Piyush Uniyal ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-9
Author(s):  
Bastien Mennecart ◽  
Wasim A. Wazir ◽  
Ramesh K. Sehgal ◽  
Rajeev Patnaik ◽  
Ningthoujam P. Singh ◽  
...  
Keyword(s):  

2021 ◽  
pp. 85-102
Author(s):  
Mukunda Dev Behera ◽  
Viswas Sudhir Chitale ◽  
Shafique Matin ◽  
Girish S. Pujar ◽  
Akhtar H. Malik ◽  
...  

2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


2021 ◽  
Author(s):  
ADITYA KHARYA ◽  
Himanshu K. Sachan ◽  
Christopher J. Spencer ◽  
Koushik Sen ◽  
Divya Prakash ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Prasenjit Barman ◽  
Francisco Sánchez-Beristain ◽  
Shruti Ranjan Mishra ◽  
Mohd Ibrahim ◽  
Narendra Kumar Swami ◽  
...  

Abstract The Cretaceous chaetetid sponge Acanthochaetetes huauclillensis Sánchez-Beristain and García-Barrera is reported for the first time from the Aptian–Cenomanian Khalsi Formation, Ladakh Himalaya, India. Its low- to high-domical growth form could suggest an adaptation to either an environment with constant sedimentation rates, or to an irregular substrate. However, these growth forms also may indicate an absence of important environmental/sedimentological changes during the lifespan of the sponges. In addition, the growth form of this species suggests a calm, non-turbulent, reef-like microenvironment. Along with the other faunal assemblages, such as the rudists, corals, and the gastropod Nerinea, A. huauclillensis indicates a tropical to subtropical shallow marine carbonate platform setting. This new finding extends its stratigraphic range from the upper Hauterivian to the Aptian–Cenomanian interval in the eastern Tethyan realm.


Author(s):  
Choudhurimayum Pankaj Sharma ◽  
Poonam Chahal ◽  
Anil Kumar ◽  
Saurabh Singhal ◽  
YP Sundriyal ◽  
...  

The Indus River, originating from Manasarovar Lake in Tibet, runs along the Indus Tsangpo suture zone in Ladakh which separates the Tethyan Himalaya in the south from the Karakoram zone to the north. Due to the barriers created by the Pir-Panjal ranges and the High Himalaya, Ladakh is located in a rain shadow zone of the Indian summer monsoon (ISM) making it a high-altitude desert. Occasional catastrophic hydrological events are known to endanger lives and properties of people residing there. Evidence of such events in the recent geologic past that are larger in magnitude than modern occurrences is preserved along the channels. Detailed investigation of these archives is imperative to expand our knowledge of extreme floods that rarely occur on the human timescale. Understanding the frequency, distribution, and forcing mechanisms of past extreme floods of this region is crucial to examine whether the causal agents are regional, global, or both on long timescales. We studied the Holocene extreme flood history of the Upper Indus catchment in Ladakh using slackwater deposits (SWDs) preserved along the Indus and Zanskar Rivers. SWDs here are composed of stacks of sand-silt couplets deposited rapidly during large flooding events in areas where a sharp reduction of flow velocity is caused by local geomorphic conditions. Each couplet represents a flood, the age of which is constrained using optically stimulated luminescence for sand and accelerator mass spectrometry and liquid scintillation counter 14C for charcoal specks from hearths. The study suggests occurrence of large floods during phases of strengthened ISM when the monsoon penetrated into arid Ladakh. Comparison with flood records of rivers draining other regions of the Himalaya and those influenced by the East Asian summer monsoon (EASM) indicates asynchronicity with the Western Himalaya that confirms the existing anti-phase relationship of the ISM-EASM that occurred in the Holocene. Detrital zircon provenance analysis indicates that sediment transportation along the Zanskar River is more efficient than the main Indus channel during extreme floods. Post−Last Glacial Maximum human migration, during warm and wet climatic conditions, into the arid upper Indus catchment is revealed from hearths found within the SWDs.


2021 ◽  
Author(s):  
Choudhurimayum Pankaj Sharma ◽  
Pradeep Srivastava

Figure S1: (A) Infrared Stimulated Luminescence (IRSL) of LD-1818 exhibiting feldspar contamination. (B) IRSL counts of all samples after complete etching including LD-1818 after re-etching. (C) Optical Stimulated Luminescence (OSL) decay curves of all samples; Figure S2: (A) Pre heat test (dotted line represents 220 °C plateau) and (B) Dose recovery test of LD-3170; Figure S3: OSL characteristics of LD-2011. (A) Probably distribution of ED all discs and (B) Sensitivity corrected luminescence growth curve; Figure S4: Radial plot of all OSL samples with ages; Table S1: Elemental, isotopic and age details of detrital zircon U-Pb geochronology of paleoflood deposits.


2021 ◽  
Author(s):  
Choudhurimayum Pankaj Sharma ◽  
Pradeep Srivastava

Figure S1: (A) Infrared Stimulated Luminescence (IRSL) of LD-1818 exhibiting feldspar contamination. (B) IRSL counts of all samples after complete etching including LD-1818 after re-etching. (C) Optical Stimulated Luminescence (OSL) decay curves of all samples; Figure S2: (A) Pre heat test (dotted line represents 220 °C plateau) and (B) Dose recovery test of LD-3170; Figure S3: OSL characteristics of LD-2011. (A) Probably distribution of ED all discs and (B) Sensitivity corrected luminescence growth curve; Figure S4: Radial plot of all OSL samples with ages; Table S1: Elemental, isotopic and age details of detrital zircon U-Pb geochronology of paleoflood deposits.


2021 ◽  
Author(s):  
Ramees Mir ◽  
Imtiyaz Parvez ◽  
Vinod Gaur

<p>We used regional as well as global Rayleigh wave signals (source-receiver distance: 5°-175°; M≥ 6, Depth ≤ 150 km) recorded at 12 broadband seismic stations in northwestern Himalaya to compute arrival angles of surface waves at each station, assuming orthogonality of the horizontal components, and error-free levelling of the instrument. The average of all measurements at a station with cross-correlation values > 0.8, between Hilbert transformed vertical and radial components, was interpreted as the degree of misalignment of the horizontal components in a geographic frame of reference.</p><p>Out of the 12 station data used in this analysis, 3 were found to have instrument misorientation errors between 5° and 10° w.r.t geographic north, 2 between 10° and 15° and the remaining 7 < 5°. The number of measurements at each of these stations ranged from 75 to 331, with 11 stations having more than 90 measurements, assuring high reliability. We also analysed data from two nearby broadband instruments located in Ladakh Himalaya. One of these (LEH) with 46 measurements showed a misorientation error of 14.87°±4.87° and the other (HNL) with 48 showed an error of 0.75°±3.48°. Since misorientation errors based on less than 90 data elements are considered to be unstable, these were not used for further analysis.</p><p>We evaluated the effect of seismograph misorientations on the inverted solutions for P-wave receiver functions (RFs) and core-refracted shear waves (SKS). The errors in Moho depths and those of other intra-crustal features were within ±2 km for instrument misorientations of up to ~15°, that is close to the resolution errors. But, the SKS results, notably the azimuths of the fast component, were, found to be quite sensitive to instrument misalignment. For example, a ~14° error in orientation was found to cause a shift of up to 20° in the calculated azimuth of the fast component. Corrections of misorientation errors in both cases showed reduction of variance in the inverted solutions.</p>


Sign in / Sign up

Export Citation Format

Share Document