Jurassic–Cretaceous arc magmatism along the Shyok–Bangong Suture from NW Himalaya: Formation of the peri-Gondwana basement to the Ladakh Arc

2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162

2021 ◽  
pp. jgs2021-109
Author(s):  
Igor V. Kemkin ◽  
Andrei V. Grebennikov ◽  
Xing-Hua Ma ◽  
Ke-Ke Sun

We present new U–Pb age data for granitoids in the Central Sikhote–Alin orogenic belt in SE Russia, which refute the established opinion about the absence of the Late Cretaceous magmatism at the eastern margin of the Paleo-Asian continent. It was previously thought that a period of magmatic quiescence occurred from 88 to 50 Ma, related to subduction of the Paleo-Pacific Plate under the eastern margin of the Paleo-Asian continent, although this is inconsistent with evidence from the Sikhote–Alin, Sakhalin, and Japan regions. Three suites of plutonic rocks with different ages were identified in this study. The first suite has ages of 105–92 Ma and formed in a syn-orogenic setting. The second (86–83 Ma) and third (ca. 73 Ma) suites formed during the post-orogenic stage of the Sikhote–Alin orogenic belt. The second and third suites were coeval with Late Cretaceous granitoids that formed in a suprasubduction continental arc known as the Eastern Sikhote–Alin volcanic–plutonic belt (ESAVPB). However, the studied rocks are located far inland from the ESAVPB. The ages of the studied granitoids coincide with the timing of a change in the angle of convergence between the Paleo-Pacific Plate and eastern margin of the Paleo-Asian continent. This change in motion of the oceanic plate with respect to the continental plate was probably caused by a rupture in the subducted slab (i.e., a slab tear), followed by asthenospheric upwelling and partial melting of the overlying crust, which ultimately generated post-orogenic intrusive magmatism.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5738616


2021 ◽  
pp. geochem2021-037
Author(s):  
E.G. Potter ◽  
C.J. Kelly ◽  
W.J. Davis ◽  
G. Chi ◽  
S-Y. Jiang ◽  
...  

The Patterson Lake corridor is a new uranium district located on the southwestern margin of the Athabasca Basin. Known resources extend almost one kilometer below the unconformity in graphite- and sulfide-bearing shear zones within highly altered metamorphic rocks. Despite different host rocks and greater depths below the unconformity, alteration assemblages (chlorite, illite, kaolinite, tourmaline and hematite), ore grades and textures are typical of unconformity-related deposits. This alteration includes at least three generations of Mg-rich tourmaline (magnesio-foitite). The boron isotopic composition of magnesio-foitite varies with generation: the earliest generation only observed in shallow samples from the Triple R deposit (Tur 1) contain the heaviest isotopic signature (δ11B ≈ +26 to +19 ‰), whereas subsequent generations (Tur 2, Tur 3) yield lighter and more homogeneous isotopic signatures (δ11B ≈ +17.5 to +19.9 ‰). These results are consistent with precipitation from low temperature, NaCl- and CaCl2-rich brine(s) derived from an isotopically heavy boron source (e.g. evaporated seawater) that interacted with tourmaline and silicates in the basement rocks and/or fluids derived from depth (with low δ11B values). The lower δ11B values in paragenetically later magnesio-foitite reflect greater contributions of basement-derived boron over time whereas minor compositional variations reflect local metal sources (e.g. Cr, V, Ti) and evolving fluid chemistry (decreasing Na and Ca, increasing Mg) over time. The δ11B and chemical variation in magnesio-foitite over time reinforce the strong interactions with basement rocks in these systems while supporting incursion of basinal brines well below the unconformity contact.Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathwaysSupplementary material:https://doi.org/10.6084/m9.figshare.c.5727555


2020 ◽  
Vol 177 (6) ◽  
pp. 1281-1293 ◽  
Author(s):  
K. J. W. McCaffrey ◽  
R. E. Holdsworth ◽  
J. Pless ◽  
B. S. G. Franklin ◽  
K. Hardman

Upfaulted ridges of Neoarchean crystalline basement rocks formed in the Faeroe-Shetland basin as a consequence of Mesozoic rift processes and are an active target for oil exploration. We carried out a comprehensive fault and fracture attribute study on the extensive exposures of geologically equivalent crystalline basement rocks onshore in NW Scotland (Lewisian Gneiss Complex) as an analogue for the offshore oil and gas reservoirs of the uplifted Rona Ridge basement high. Our analysis shows a power-law distribution for fracture sizes (aperture and length), with random to clustered spacing and high connectivity indices. Regional variations between the Scottish mainland and the Outer Hebrides are recognized that compare directly with variations observed along the Rona Ridge in the Faeroe-Shetland basin. Here we develop a model for the scaling properties of the fracture systems in which variations in the aperture attributes are a function of the depth of erosion beneath the top basement unconformity. More generally, the combination of size, spatial and connectivity attributes we found in these basement highs demonstrates that they can form highly effective, well-plumbed reservoir systems in their own right.Supplementary material: Additional methods and results are available at: https://doi.org/10.6084/m9.figshare.c.5017139Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


2021 ◽  
pp. SP513-2020-175
Author(s):  
Abhinay Sharma ◽  
Samarendra Sahoo ◽  
N. V. Chalapathi Rao ◽  
B. Belyatsky ◽  
P. Dhote ◽  
...  

AbstractThe Early to Late Cretaceous Mundwara alkaline complex (comprising the Musala, Mer and Toa plugs) displays a broad spectrum of alkaline rocks closely associated in space and time with the Deccan Large Igneous Province (DLIP) in NW India. Petrology and Nd-Sr isotopic data on two youngest and altogether compositionally different lamprophyre dykes of the Mundwara alkaline complex are presented in this paper to understand their petrogenesis and also to constrain the magmatic processes responsible for generation of the rock spectrum in the complex (pyroxenite, picrite ankaramite, carbonatite, shonkinite, olivine gabbro, feldspathoidal and foid-free syenite). The two lamprophyre dykes occurring in the Mer and the Musala hills are referred to as basaltic camptonite I and camptonite II, respectively. The basaltic camptonite-I is highly porphyritic and contains olivine, clinopyroxene and magnetite macrocrysts embedded within the groundmass of microphenocyrsts composed of clinopyroxene, phlogopite, magnetite and feldspar. Whereas camptonite-II, with more or less similar texture, contains amphibole, biotite, magnetite and clinopyroxene within the microphenocrystic groundmass of amphibole, biotite, apatite and feldspar. Pyroxenes are chemically zoned and display corrosion of the cores revealing that they are antecrysts developed during early stages of magma evolution and later on inherited by more evolved magmas. Mineral chemistry and trace element composition of the lamprophyres reveal that fractional crystallisation was a dominant process. Early segregation of olivine + Cr-rich clinopyroxene + Cr-spinel from a primary hydrous alkali basalt within a magmatic plumbing system is inferred which led to the generation of basaltic camptonitic magma (M1) forming the Mer hill lamprophyre. Subsequently, progressive fractionation of pyroxene and Fe-Ti oxides from the basaltic camptonitic (M1) magma generated camptonitic (M2) magma forming the Musala hill lamprophyre. Both lamprophyre dykes on the Sr-Nd isotopic array reflect plume type asthenospheric derivation which largely corresponds to the Réunion plume and other alkaline rocks of the Deccan LIP. Our study brings out a complex sequence of processes such as crystal fractionation, accumulation and corrosion in the magmatic plumbing system involved in the generation of the Mundwara alkaline complex.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5277073


2018 ◽  
Vol 481 (1) ◽  
pp. 319-339 ◽  
Author(s):  
Aranya Sen ◽  
Koushik Sen ◽  
Hari B. Srivastava ◽  
Saurabh Singhal ◽  
Purbajyoti Phukon

AbstractThe Bhatwari Gneiss of Bhagirathi Valley in the Garhwal Himalaya is a Paleoproterozoic crystalline rock from the Inner Lesser Himalayan Sequence. On the basis of field and petrographic analyses, we have classified the Bhatwari Gneiss into two parts: the Lower Bhatwari Gneiss (LBG) and the Upper Bhatwari Gneiss (UBG). The geochemical signatures of these rocks suggest a monzonitic protolith for the LBG and a granitic protolith for the UBG. The UBG has a calc-alkaline S-type granitoid protolith, whereas the LBG has an alkaline I-type granitoid protolith; the UBG is more fractionated. The trace element concentrations suggest a volcanic arc setting for the LBG and a within-plate setting for the UBG. The U–Pb geochronology of one sample from the LBG gives an upper intercept age of 1988 ± 12 Ma (n = 10, MSWD = 2.5). One sample from the UBG gives an upper intercept age of 1895 ± 22 Ma (n = 15, MSWD = 0.82), whereas another sample does not give any upper intercept age, but indicates magmatism from c. 1940 to 1840 Ma. Based on these ages, we infer that the Bhatwari Gneiss has evolved due to arc magmatism and related back-arc rifting over a time period of c. 100 Ma during the Proterozoic. This arc magmatism is related to the formation of the Columbia supercontinent.Supplementary material: LA–ICP-MS calibration and adjusted major element data used for computing the isometric log-ratio transformations are available at https://doi.org/10.6084/m9.figshare.c.4272158


2021 ◽  
pp. jgs2021-070
Author(s):  
Isabel C. Zutterkirch ◽  
Christopher L. Kirkland ◽  
Milo Barham ◽  
Chris Elders

Detrital zircon U-Pb geochronology has enabled advances in the understanding of sediment provenance, transportation pathways, and the depositional age of sedimentary packages. However, sample selection and processing can result in biasing of detrital zircon age spectra. This paper presents a novel approach using in-situ detrital zircon U-Pb measurements on thin-sections to provide greater confidence in maximum depositional ages and provenance interpretations. New U-Pb age data of 310 detrital zircon grains from 16 thin-sections of the Triassic Mungaroo Formation from two wells in the Northern Carnarvon Basin, Australia, are presented. Whilst detrital zircon age modes are consistent with previous work, there are some differences in the relative proportions of age modes, which is partly attributed to a lack of small grains in hand-picked grain mounts. The relative sample bias is quantified via grain size comparison of dated zircon (in thin-sections or hand-picked mounts) relative to all zircons identified in bulk-mounts and thin-sections. The youngest age mode (∼320 – 195 Ma) is consistent with an active margin to the north, likely South West Borneo and/or Lhasa terrane. The dated zircons reveal a maximum depositional age of 197 Ma for the upper part of Mungaroo Formation, suggesting deposition continued into the Early Jurassic.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5628911


2021 ◽  
pp. SP520-2020-176
Author(s):  
V. G. P. Cruz ◽  
E. F. Lima ◽  
L. M. M. Rossetti ◽  
N. G. Pasqualon

AbstractDespite the intriguing correlation between Continental Flood Basalts (CFB) provinces and environmental crises, little is known about how the local/regional sedimentary systems and environment respond to flood basalt volcanism. Active sedimentary systems, and their interaction with volcanism, provides an important rock record to understand palaeoenvironments in volcanic settings. The Paraná-Etendeka Igneous Province is a well-known example of a CFB emplaced on a dry desert environment, but evidence has also shown the existence of humid conditions during the volcanic episode. This work describes and interprets non-volcanic sedimentary and volcaniclastic rocks interbedded with Paraná-Etendeka Igneous Province lavas in southernmost Brazil to better understand palaeoenvironmental process and changes during the onset of volcanism. Non-volcanic sedimentary rocks record the existence of ephemeral sheet-like flows and ponds/lakes while volcaniclastic rocks documents hydromagmatic activity, supporting a change to more humid conditions. Stratigraphic constrains indicate that this change started with the onset of volcanism and affected the whole province. We suggest that SO2 degassing from Paraná-Etendeka province may have caused a net global surface cooling resulting in precipitation redistribution and a local increase in rainfall. This hypothesis may help explaining the cooling and increased humidity observed elsewhere to be closely related with the Paraná-Etendeka emplacement.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5505710


2020 ◽  
Vol 177 (6) ◽  
pp. 1168-1185 ◽  
Author(s):  
Kit Hardman ◽  
Robert E. Holdsworth ◽  
Edward Dempsey ◽  
Ken McCaffrey

Fissure-fill networks are a widely recognized, but relatively little described, near-surface phenomenon (<1–2 km) hosted in carbonate and crystalline basement rocks below regional unconformities. Faults and fractures in otherwise tight Devonian carbonate basement rocks of the Tor Bay region, Devon, SW England are associated with the development of millimetre- to decametre-wide fissures containing red-coloured early Permian sedimentary material, vuggy calcite mineralization and wall rock collapse breccia. These features preserve evidence about the style and history of fault deformation and reactivation in near-surface settings and on fluid-related processes, such as elutriation and/or mineralization. Field observations, palaeostress analysis and fracture topology analyses show that the rift-related faults and fractures created a network of long-lived open cavities during the development of the Portland–Wight Basin in the early Permian. Once formed, they were subjected to episodic, probably seismically induced, fluid fluxing events and local karstification. The large, well-connected networks of naturally propped fractures were (and possibly still are) important fluid migration pathways within otherwise low-permeability host rocks. These structures are probably equivalent to those observed in many other rift-related, near-surface tectonic settings and suggest that the Tor Bay outcrops can be used as a global analogue for sub-unconformity open fissure systems hosted in low-permeability basement rocks.Supplementary material: Appendix A is available at https://doi.org/10.6084/m9.figshare.c.5023103


2022 ◽  
pp. SP521-2021-168
Author(s):  
Jun Wang ◽  
Yujie Yuan ◽  
Dexian Zhang ◽  
Su-Chin Chang

AbstractSituated within the southern segment of the South China Block (SCB), the Ganzhou Basin formed due to subduction of the paleo-Pacific plate beneath to the SCB. Late Cretaceous successions in this basin consist of fluvial and lacustrine facies red beds hosting abundant dinosaur and dinosaur egg fossils. This study reports detrital zircon geochronological data from a crystallized tuff and four sandstones found in the Late Cretaceous Ganzhou Group of the Ganzhou Basin. Age distributions included four major age subpopulations of predominantly Triassic, Devonian-Ordovician, Neoproterozoic and Paleoproterozoic ages. These indicate source material derived from Yanshanian and Triassic granitoids as well as from Kwangsian and Jiangnan orogens. Age signatures generally resemble those recorded in the adjacent Nanxiong Basin but also include distinctive features. Provenance signatures from successive units indicate a tectonic transition from intracontinental extension at ∼120 Ma to compression near the Cretaceous/Paleogene boundary. This tectonic transition was probably driven by continent-continent collision between the Indian and Eurasian plates, as well as by a shift in the subduction direction of the paleo-Pacific plate beneath the Eurasian plate.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5776518


Sign in / Sign up

Export Citation Format

Share Document