arboreal marsupials
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 6)

H-INDEX

29
(FIVE YEARS 2)

2020 ◽  
Author(s):  
David Lindenmayer ◽  
David Blair ◽  
Lachlan McBurney ◽  
Sam Banks ◽  
Elle Bowd

ABSTRACT The catastrophic 2009 wildfires in the Mountain Ash (Eucalyptus regnans) forests of the Central Highl&s of Victoria provided an opportunity to gain new insights into the responses to fire by various elements of the biota. Ongoing long-term monitoring at a large number of permanent field sites for up to 25 years prior to the fire, together with 10 years of post-fire monitoring, has provided an unparalleled series of datasets on mammal, bird, & plant responses on burned & unburned sites. The empirical studies briefly summarized in this paper show patterns of steep declines in large old trees & declines in site occupancy by arboreal marsupials & birds. These changes contrast markedly with the responses of the two most common species of small mammals (the Agile Antechinus [Antechinus agilis] & Bush Rat [Rattus fuscipes]), which recovered within two generations after the fire. Declines in arboreal marsupials, birds & large old trees have also occurred on unburned sites, indicating an ecosystem-wide trend. In general, logging had a greater impact than fire on the majority of groups of birds & plants, particularly post-fire salvage logging that occurred in some areas following the 2009 wildfires. Beyond interactions between fire & post-fire (salvage) logging & their effects on forest biota, we have uncovered evidence of other kinds of interactions in Mountain Ash forests. These include interactions between: (1) the severity of fires & logging history, (2) post-fire bird population recovery & long-term climate & short-term weather conditions, & (3) impacts on forest soils. The structure & l&scape composition of the Mountain Ash ecosystem has been radically altered over the last century. This has resulted from the combined impact of several large fires, including the 2009 fires as well as widespread clearfell logging that has been conducted within state forests over the last 50 years. The ecosystem now supports old growth cover that is 1/30th to 1/60th of what it was estimated to have been prior to European settlement. The ongoing decline of key components of the Mountain Ash ecosystem has led to it being classified as Critically Endangered & at high risk of ecosystem collapse. We argue that current forest policy & practices need to better mitigate the effects of fire on this already highly disturbed forest & enhance the possible persistence of species in this ecosystem. Several key strategies are required to do this. First, there is a need to significantly exp& the extent of old growth within the Mountain Ash forest estate. This is because fire severity is diminished in such areas. Spatial contagion across old-growth dominated l&scapes also may be suppressed relative to l&scapes composed primarily of young forest. Allied management strategies include the protection of more mesic parts of Mountain Ash l&scapes as these are less likely to burn or at least burn at high severity. Such enhanced protection should include an exp&ed network of buffers around drainage lines & waterways as these are where fire severity is likely to be lowest & also where old growth elements like large old hollow-bearing trees are more abundant. In addition, all existing living & dead hollow-bearing trees need to be protected by buffers of unlogged forest within wood production forests to promote their st&ing life & better conserve cavity-dependent fauna such as the Critically Endangered Leadbeater’s Possum (Gymnobelideus leadbeateri) & other declining taxa like the Greater Glider (Petauroides volans).


2020 ◽  
Author(s):  
D. B. Lindenmayer ◽  
W. Blanchard ◽  
D. Blair ◽  
L. McBurney ◽  
C. Taylor ◽  
...  

2019 ◽  
Vol 28 (11) ◽  
pp. 2951-2965 ◽  
Author(s):  
Alyson M. Stobo-Wilson ◽  
Brett P. Murphy ◽  
Teigan Cremona ◽  
Susan M. Carthew

2019 ◽  
Vol 46 (6) ◽  
pp. 518
Author(s):  
Luke D. Emerson ◽  
Guy-Anthony Ballard ◽  
Karl Vernes

Abstract ContextAccurate estimates of abundance are extremely useful for wildlife management and conservation. Estimates generated from distance sampling are typically considered superior to strip transects and abundance indices, as the latter do not account for probability of detection, thereby risking significant error. AimTo compare density estimates generated from conventional distance sampling (CDS) of arboreal marsupials with strip transect density estimates and abundance indices. MethodsOff-track CDS and strip transects were used to estimate densities of P. volans and P. peregrinus across ~2.6km2 of remnant eucalypt forest at Mt Duval in north-eastern New South Wales. Key resultsCDS density estimates for P. volans (1.36ha−1, 95% confidence interval (CI) of 1.07–1.72ha−1) and P. peregrinus (0.28ha−1, 95% CI 0.22–0.35ha−1) were consistent with densities reported in other studies conducted in open eucalypt forests. A strip transect width of 40m for P. volans resulted in a collective set of values for density (1.35ha−1), error (s.e.±0.14), precision (cv 0.10) and 95% CI (1.07–1.62ha−1) closest to those associated with the CDS-generated density estimate (1.36ha−1, s.e.±0.15, cv 0.10, 95% CI 1.07–1.72ha−1). Strip widths of 10 to 40m resulted in density estimates for P. peregrinus closest to those generated through CDS, but much less precise. ConclusionsAlthough a 40-m wide strip transect provided a robust density estimate for P. volans at Mt Duval, this is unlikely to be consistent across different study areas. Strip transects provided less precise density estimates, or underestimated P. peregrinus density at Mt Duval, when compared with CDS density estimates. CDS should be favoured over strip transects or abundance indices for estimating P. volans and P. peregrinus abundance, because it is capable of providing more meaningful and robust abundance estimates by accounting for the probability of detection from the transect line across different habitats. ImplicationsResearchers, conservation managers and decision makers should be aware that common methods for assessing arboreal marsupial abundance have serious potential weaknesses. Thus, it would be prudent to invest in studies that address imperfect detection to improve the quality of monitoring data.


2019 ◽  
Vol 46 (1) ◽  
pp. 64 ◽  
Author(s):  
Yang Hu ◽  
Graeme Gillespie ◽  
Tim S. Jessop

Context Australia harbours an immense diversity of reptiles, which are generally expected to have frequent and diverse trophic interactions with introduced mammalian carnivores. Nevertheless, the potential for predatory or competitive interactions is likely to be contingent on multiple processes, including the importance of reptiles in the diet of introduced predators, alongside overlaps in their body sizes and ecological niches that would influence the strength of their interactions. In Australia’s temperate and relatively productive mesic environments there is little understanding of how introduced mammalian predators affect reptile assemblages. Aims The aim was to investigate the effects that a European red fox (Vulpes vulpes; 5–7kg) suppression program had on the abundance and species richness of a reptile community, with species ranging in size from the largest local ectothermic predator, the lace monitor (Varanus varius; 4–7kg), to small terrestrial reptiles (mostly 10–150g). Methods We utilised two sampling designs (baited camera monitoring stations and pitfall trapping) to evaluate the effects of fox suppression and other site-level ecological covariates (fire regime and habitat vegetation characteristics) on the lace monitor and small terrestrial reptiles. Reptile abundance and richness at site level were estimated from count-related abundance models. Key results For lace monitors, significantly higher abundances occurred in poison-baited areas relative to control areas. This suggests that fox suppression can affect the populations of the lace monitor via mesopredator release arising from reduced competition and, possibly, predation. For small terrestrial reptiles, neither abundance nor species richness were influenced by fox suppression. Individual abundances of the three most common small reptile species matched the overall pattern, as only responses to structural parameters of the habitat were detected. Conclusions Fox suppression can have different impacts for different reptile taxa, pending their ecological niche, as only the largest species was affected. Implications Increase in lace monitor abundance may change food web dynamics in fox-suppressed sites, such as by increasing predation pressure on arboreal marsupials.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4452 ◽  
Author(s):  
Katherine E. Dahlhausen ◽  
Ladan Doroud ◽  
Alana J. Firl ◽  
Adam Polkinghorne ◽  
Jonathan A. Eisen

Koalas (Phascolarctos cinereus) are arboreal marsupials native to Australia that eat a specialized diet of almost exclusively eucalyptus leaves. Microbes in koala intestines are known to break down otherwise toxic compounds, such as tannins, in eucalyptus leaves. Infections by Chlamydia, obligate intracellular bacterial pathogens, are highly prevalent in koala populations. If animals with Chlamydia infections are received by wildlife hospitals, a range of antibiotics can be used to treat them. However, previous studies suggested that koalas can suffer adverse side effects during antibiotic treatment. This study aimed to use 16S rRNA gene sequences derived from koala feces to characterize the intestinal microbiome of koalas throughout antibiotic treatment and identify specific taxa associated with koala health after treatment. Although differences in the alpha diversity were observed in the intestinal flora between treated and untreated koalas and between koalas treated with different antibiotics, these differences were not statistically significant. The alpha diversity of microbial communities from koalas that lived through antibiotic treatment versus those who did not was significantly greater, however. Beta diversity analysis largely confirmed the latter observation, revealing that the overall communities were different between koalas on antibiotics that died versus those that survived or never received antibiotics. Using both machine learning and OTU (operational taxonomic unit) co-occurrence network analyses, we found that OTUs that are very closely related to Lonepinella koalarum, a known tannin degrader found by culture-based methods to be present in koala intestines, was correlated with a koala’s health status. This is the first study to characterize the time course of effects of antibiotics on koala intestinal microbiomes. Our results suggest it may be useful to pursue alternative treatments for Chlamydia infections without the use of antibiotics or the development of Chlamydia-specific antimicrobial compounds that do not broadly affect microbial communities.


2017 ◽  
Vol 391 ◽  
pp. 221-229 ◽  
Author(s):  
David B. Lindenmayer ◽  
Wade Blanchard ◽  
David Blair ◽  
Lachlan McBurney ◽  
Sam C. Banks

2017 ◽  
Vol 39 (2) ◽  
pp. 254 ◽  
Author(s):  
Kylie Soanes ◽  
Briony Mitchell ◽  
Rodney van der Ree

We review eight years of monitoring data to quantify the number of predation attempts on arboreal marsupials using canopy bridges and glider poles across a major road in south-east Australia. We recorded 13 488 detections of arboreal marsupials on the structures, yet only a single (and unsuccessful) predation attempt was recorded.


Sign in / Sign up

Export Citation Format

Share Document