scholarly journals Cohomological Invariants in Positive Characteristic

Author(s):  
Burt Totaro

Abstract We determine the mod $p$ cohomological invariants for several affine group schemes $G$ in characteristic $p$. These are invariants of $G$-torsors with values in étale motivic cohomology, or equivalently in Kato’s version of Galois cohomology based on differential forms. In particular, we find the mod 2 cohomological invariants for the symmetric groups and the orthogonal groups in characteristic 2, which Serre computed in characteristic not 2. We also determine all operations on the mod $p$ étale motivic cohomology of fields, extending Vial’s computation of the operations on the mod $p$ Milnor K-theory of fields.

2011 ◽  
Vol 10 (04) ◽  
pp. 605-613
Author(s):  
ALEXEY V. GAVRILOV

Let 𝕜 be a field of characteristic p > 0 and R be a subalgebra of 𝕜[X] = 𝕜[x1, …, xn]. Let J(R) be the ideal in 𝕜[X] defined by [Formula: see text]. It is shown that if it is a principal ideal then [Formula: see text], where q = pn(p - 1)/2.


2010 ◽  
Vol 06 (07) ◽  
pp. 1541-1564 ◽  
Author(s):  
QINGQUAN WU ◽  
RENATE SCHEIDLER

Let K be a function field over a perfect constant field of positive characteristic p, and L the compositum of n (degree p) Artin–Schreier extensions of K. Then much of the behavior of the degree pn extension L/K is determined by the behavior of the degree p intermediate extensions M/K. For example, we prove that a place of K totally ramifies/is inert/splits completely in L if and only if it totally ramifies/is inert/splits completely in every M. Examples are provided to show that all possible decompositions are in fact possible; in particular, a place can be inert in a non-cyclic Galois function field extension, which is impossible in the case of a number field. Moreover, we give an explicit closed form description of all the different exponents in L/K in terms of those in all the M/K. Results of a similar nature are given for the genus, the regulator, the ideal class number and the divisor class number. In addition, for the case n = 2, we provide an explicit description of the ramification group filtration of L/K.


Author(s):  
Merrick Cai ◽  
Daniil Kalinov

In this paper, we study the irreducible quotient [Formula: see text] of the polynomial representation of the rational Cherednik algebra [Formula: see text] of type [Formula: see text] over an algebraically closed field of positive characteristic [Formula: see text] where [Formula: see text]. In the [Formula: see text] case, for all [Formula: see text] we give a complete description of the polynomials in the maximal proper graded submodule [Formula: see text], the kernel of the contravariant form [Formula: see text], and subsequently find the Hilbert series of the irreducible quotient [Formula: see text]. In the [Formula: see text] case, we give a complete description of the polynomials in [Formula: see text] when the characteristic [Formula: see text] and [Formula: see text] is transcendental over [Formula: see text], and compute the Hilbert series of the irreducible quotient [Formula: see text]. In doing so, we prove a conjecture due to Etingof and Rains completely for [Formula: see text], and also for any [Formula: see text] and [Formula: see text]. Furthermore, for [Formula: see text], we prove a simple criterion to determine whether a given polynomial [Formula: see text] lies in [Formula: see text] for all [Formula: see text] with [Formula: see text] and [Formula: see text] fixed.


2008 ◽  
Vol 191 ◽  
pp. 111-134 ◽  
Author(s):  
Christian Liedtke

AbstractWe establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we show that Horikawa surfaces lift to characteristic zero.


2011 ◽  
Vol 131 (6) ◽  
pp. 1089-1104 ◽  
Author(s):  
Sangtae Jeong

2018 ◽  
Vol 17 (04) ◽  
pp. 1850064
Author(s):  
C. Bekh-Ochir ◽  
S. A. Rankin

In earlier work, it was established that for any finite field [Formula: see text] and any nonempty set [Formula: see text], the free associative (nonunitary) [Formula: see text]-algebra on [Formula: see text], denoted by [Formula: see text], had infinitely many maximal [Formula: see text]-spaces, but exactly two maximal [Formula: see text]-ideals (each of which was shown to be a maximal [Formula: see text]-space). This raises the interesting question as to whether or not the maximal [Formula: see text]-spaces can be classified. However, aside from the two maximal [Formula: see text]-ideals, no examples of maximal [Formula: see text]-spaces of [Formula: see text] have been identified to this point. This paper presents, for each finite field [Formula: see text], an infinite set of proper [Formula: see text]-spaces [Formula: see text] of [Formula: see text], none of which is a [Formula: see text]-ideal. It is proven that for any distinct integers [Formula: see text], [Formula: see text]. Furthermore, it is proven that for the prime field [Formula: see text], [Formula: see text] any prime, [Formula: see text] is a maximal [Formula: see text]-space of [Formula: see text]. We conjecture that for any finite field [Formula: see text] of positive characteristic different from 2 and each integer [Formula: see text], [Formula: see text] is a maximal [Formula: see text]-space of [Formula: see text]. In characteristic 2, the situation is slightly different and we provide different candidates for maximal [Formula: see text]-spaces.


2015 ◽  
Vol 151 (7) ◽  
pp. 1288-1308
Author(s):  
Friedrich Knop ◽  
Gerhard Röhrle

Let $G$ be a simple algebraic group. A closed subgroup $H$ of $G$ is said to be spherical if it has a dense orbit on the flag variety $G/B$ of $G$. Reductive spherical subgroups of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed that each example from Krämer’s list also gives rise to a spherical subgroup in the corresponding simple algebraic group in any positive characteristic. Nevertheless, up to now there has been no classification of all such instances in positive characteristic. The goal of this paper is to complete this classification. It turns out that there is only one additional instance (up to isogeny) in characteristic 2 which has no counterpart in Krämer’s classification. As one of our key tools, we prove a general deformation result for subgroup schemes that allows us to deduce the sphericality of subgroups in positive characteristic from the same property for subgroups in characteristic zero.


Sign in / Sign up

Export Citation Format

Share Document