scholarly journals Motivic Steenrod operations in characteristic p

2020 ◽  
Vol 8 ◽  
Author(s):  
Eric Primozic

Abstract For a prime p and a field k of characteristic $p,$ we define Steenrod operations $P^{n}_{k}$ on motivic cohomology with $\mathbb {F}_{p}$ -coefficients of smooth varieties defined over the base field $k.$ We show that $P^{n}_{k}$ is the pth power on $H^{2n,n}(-,\mathbb {F}_{p}) \cong CH^{n}(-)/p$ and prove an instability result for the operations. Restricted to mod p Chow groups, we show that the operations satisfy the expected Adem relations and Cartan formula. Using these new operations, we remove previous restrictions on the characteristic of the base field for Rost’s degree formula. Over a base field of characteristic $2,$ we obtain new results on quadratic forms.


Author(s):  
Olivier Haution

AbstractWe give a new construction of a weak form of Steenrod operations for Chow groups modulo a prime number p for a certain class of varieties. This class contains projective homogeneous varieties which are either split or considered over a field admitting some form of resolution of singularities, for example any field of characteristic not p. These reduced Steenrod operations are sufficient for some applications to the theory of quadratic forms.



2011 ◽  
Vol 215 (4) ◽  
pp. 511-522 ◽  
Author(s):  
Satoshi Kondo ◽  
Seidai Yasuda


2009 ◽  
Vol 05 (05) ◽  
pp. 897-910 ◽  
Author(s):  
DARREN GLASS

This paper examines the relationship between the automorphism group of a hyperelliptic curve defined over an algebraically closed field of characteristic two and the 2-rank of the curve. In particular, we exploit the wild ramification to use the Deuring–Shafarevich formula in order to analyze the ramification of hyperelliptic curves that admit extra automorphisms and use this data to impose restrictions on the genera and 2-ranks of such curves. We also show how some of the techniques and results carry over to the case where our base field is of characteristic p > 2.





Author(s):  
Gonçalo Tabuada

AbstractIn this article we construct a new motivic measure called the Jacques Tits motivic measure. As a first main application, we prove that two Severi-Brauer varieties (or, more generally, two twisted Grassmannian varieties), associated to 2-torsion central simple algebras, have the same class in the Grothendieck ring of varieties if and only if they are isomorphic. In addition, we prove that if two Severi-Brauer varieties, associated to central simple algebras of period $$\{3, 4, 5, 6\}$$ { 3 , 4 , 5 , 6 } , have the same class in the Grothendieck ring of varieties, then they are necessarily birational to each other. As a second main application, we prove that two quadric hypersurfaces (or, more generally, two involution varieties), associated to quadratic forms of dimension 6 or to quadratic forms of arbitrary dimension defined over a base field k with $$I^3(k)=0$$ I 3 ( k ) = 0 , have the same class in the Grothendieck ring of varieties if and only if they are isomorphic. In addition, we prove that the latter main application also holds for products of quadric hypersurfaces.





2008 ◽  
Vol 07 (02) ◽  
pp. 147-166 ◽  
Author(s):  
ROBERTO LA SCALA ◽  
ALEXANDER ZUBKOV

In this paper we consider the problem of describing the costandard modules ∇(λ) of a Schur superalgebra S(m|n,r) over a base field K of arbitrary characteristic. Precisely, if G = GL(m|n) is a general linear supergroup and Dist (G) its distribution superalgebra we compute the images of the Kostant ℤ-form under the epimorphism Dist (G) → S(m|n,r). Then, we describe ∇(λ) as the null-space of some set of superderivations and we obtain an isomorphism ∇(λ) ≈ ∇(λ+|0) ⊗ ∇(0|λ-) assuming that λ = (λ+|λ-) and λm = 0. If char (K) = p we give a Frobenius isomorphism ∇(0|pμ) ≈ ∇(μ)p where ∇(μ) is a costandard module of the ordinary Schur algebra S(n,r). Finally we provide a characteristic free linear basis for ∇(λ|0) which is parametrized by a set of superstandard tableaux.



2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Nikita Karpenko

AbstractWe prove certain weak versions of some celebrated results due to Alexander Vishik comparing rationality of algebraic cycles over the function field of a quadric and over the base field. The original proofs use Vishik’s symmetric operations in the algebraic cobordism theory and work only in characteristic 0. Our proofs use the modulo 2 Steenrod operations in the Chow theory and work in any characteristic ≠ 2. Our weak versions are still sufficient for existing applications. In particular, Vishik’s construction of fields of u-invariant 2r + 1, for r ≥ 3, is extended to arbitrary characteristic ≠ 2.



Author(s):  
Burt Totaro

Abstract We determine the mod $p$ cohomological invariants for several affine group schemes $G$ in characteristic $p$. These are invariants of $G$-torsors with values in étale motivic cohomology, or equivalently in Kato’s version of Galois cohomology based on differential forms. In particular, we find the mod 2 cohomological invariants for the symmetric groups and the orthogonal groups in characteristic 2, which Serre computed in characteristic not 2. We also determine all operations on the mod $p$ étale motivic cohomology of fields, extending Vial’s computation of the operations on the mod $p$ Milnor K-theory of fields.



Sign in / Sign up

Export Citation Format

Share Document