indefinite weight function
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guglielmo Feltrin ◽  
Elisa Sovrano ◽  
Andrea Tellini

<p style='text-indent:20px;'>We study the second-order boundary value problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases}\, -u'' = a_{\lambda,\mu}(t) \, u^{2}(1-u), &amp; t\in(0,1), \\\, u'(0) = 0, \quad u'(1) = 0,\end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ a_{\lambda,\mu} $\end{document}</tex-math></inline-formula> is a step-wise indefinite weight function, precisely <inline-formula><tex-math id="M2">\begin{document}$ a_{\lambda,\mu}\equiv\lambda $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M3">\begin{document}$ [0,\sigma]\cup[1-\sigma,1] $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ a_{\lambda,\mu}\equiv-\mu $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M5">\begin{document}$ (\sigma,1-\sigma) $\end{document}</tex-math></inline-formula>, for some <inline-formula><tex-math id="M6">\begin{document}$ \sigma\in\left(0,\frac{1}{2}\right) $\end{document}</tex-math></inline-formula>, with <inline-formula><tex-math id="M7">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> positive real parameters. We investigate the topological structure of the set of positive solutions which lie in <inline-formula><tex-math id="M9">\begin{document}$ (0,1) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M10">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> vary. Depending on <inline-formula><tex-math id="M12">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and based on a phase-plane analysis and on time-mapping estimates, our findings lead to three different (from the topological point of view) global bifurcation diagrams of the solutions in terms of the parameter <inline-formula><tex-math id="M13">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>. Finally, for the first time in the literature, a qualitative bifurcation diagram concerning the number of solutions in the <inline-formula><tex-math id="M14">\begin{document}$ (\lambda,\mu) $\end{document}</tex-math></inline-formula>-plane is depicted. The analyzed Neumann problem has an application in the analysis of stationary solutions to reaction-diffusion equations in population genetics driven by migration and selection.</p>


2018 ◽  
Vol 36 (1) ◽  
pp. 195 ◽  
Author(s):  
Zakaria El Allali ◽  
Said Taarabti ◽  
Khalil Ben Haddouch

In this paper we will study the existence of solutions for the nonhomogeneous elliptic equation with variable exponent $\Delta^2_{p(x)} u=\lambda V(x) |u|^{q(x)-2} u$, in a smooth bounded domain,under Neumann boundary conditions, where $\lambda$ is a positive real number, $p,q: \overline{\Omega} \rightarrow \mathbb{R}$, are continuous functions, and $V$ is an indefinite weight function. Considering different situations concerning the growth rates involved in the above quoted problem, we will prove the existence of a continuous family of eigenvalues.


Author(s):  
Inbo Sim ◽  
Satoshi Tanaka

Employing the Kolodner–Coffman method, we show the exact multiplicity of positive solutions for the one-dimensional p-Laplacian that is subject to a Dirichlet boundary condition with a positive convex nonlinearity and an indefinite weight function.


Sign in / Sign up

Export Citation Format

Share Document