Characterization of silver nanoparticle inks toward stable roll-to-roll gravure printing

Author(s):  
Minki Lee ◽  
Sajjan Parajuli ◽  
Hyeokgyun Moon ◽  
Ryungeun Song ◽  
Saebom Lee ◽  
...  

Abstract The rheological properties of silver inks are analyzed, and the printing results are presented based on the inks and roll-to-roll printing speed. The shear viscosity, shear modulus, and extensional viscosity of the inks are measured using rotational and extensional rheometers. The inks exhibit the shear thinning power law fluids because the concentration of dispersed nanoparticles in the solvent is sufficiently low, which minimizes elasticity. After the inks are printed on a flexible substrate through gravure printing, the optical images, surface profiles, and electric resistances of the printed pattern are obtained. The width and height of the printed pattern change depending on the ink viscosity, whereas the printing speed does not significantly affect the widening. The drag-out tail is reduced at high ink viscosities and fast printing speeds, thereby improving the printed pattern quality in the roll-to-roll process. Based on the results obtained, we suggest ink and printing conditions that result in high printing quality for complicated printings, such as overlay printing registration accuracy, which imposes pattern widening and drag-out tails in printed patterns.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 245 ◽  
Author(s):  
Sang Lee ◽  
Sangyoon Lee

Although printed electronics technology has been recently employed in the production of various devices, its use for the fabrication of electronic devices with air-gap structures remains challenging. This paper presents a productive roll-to-roll printed electronics method for the fabrication of capacitive touch sensors with air-gap structures. Each layer of the sensor was fabricated by printing or coating. The bottom electrode, and the dielectric and sacrificial layers were roll-to-roll slot-die coated on a flexible substrate. The top electrode was formed by roll-to-roll gravure printing, while the structural layer was formed by spin-coating. In particular, the sacrificial layer was coated with polyvinyl alcohol (PVA) and removed in water to form an air-gap. The successful formation of the air-gap was verified by field emission scanning electron microscopy (FE-SEM). Electrical characteristics of the air-gap touch sensor samples were analyzed in terms of sensitivity, hysteresis, and repeatability. Experimental results showed that the proposed method can be suitable for the fabrication of air-gap sensors by using the roll-to-roll printed electronics technology.


2013 ◽  
Vol 469 ◽  
pp. 399-403 ◽  
Author(s):  
Jian Dong Lu ◽  
Gai Mei Zhang ◽  
Lian Fang Li

A variety of friction exists during gravure printing machine run-time. The friction between gravure roller and scraping blade has a great effect on the printing quality and gravure printing endurance. In this article, the friction between gravure roller and scraping blade is studied from the micro-contact perspective. The qualitative research of the factors that affect the friction between gravure roller and scraping blade is done, in order to confirm the effect law of the printing speed, scraping blade angle and gravure printing machine vibration on the friction between gravure roller and scraping blade.


Author(s):  
Deokkyun Yoon ◽  
Seung-Hyun Lee

In attempt to lower the production cost, roll-to-roll printing is gaining attention in electronics industries. Gravure printing, which has been the method of choice in the graphics industry for years thanks to its high resolution and process speed, is utilized to print conductive lines on flexible substrate. The main benefactors of such utilization are touch screen panel, RFID tags, thin film photovoltaics, and printed circuit board industries. The preferred substrate for conductive line printing is polymer. Due to its highly flexible nature, the printed electronics is highly flexible and is expected to create new markets where the rigid silicon and glass based electronics could not. In this work, the effect of gravure cell and trench on printing thin conductive lines as low as 20 μm line width on the polyethylene terephthalate (PET) substrate is presented. Various printing orientations including the machine direction, the cross direction, and the 45° grid mesh are used and the respective orientation’s printability is discussed.


2021 ◽  
Vol 13 (8) ◽  
pp. 1593
Author(s):  
Luca Cenci ◽  
Valerio Pampanoni ◽  
Giovanni Laneve ◽  
Carla Santella ◽  
Valentina Boccia

Developing reliable methodologies of data quality assessment is of paramount importance for maximizing the exploitation of Earth observation (EO) products. Among the different factors influencing EO optical image quality, sharpness has a relevant role. When implementing on-orbit approaches of sharpness assessment, such as the edge method, a crucial step that strongly affects the final results is the selection of suitable edges to use for the analysis. Within this context, this paper aims at proposing a semi-automatic, statistically-based edge method (SaSbEM) that exploits edges extracted from natural targets easily and largely available on Earth: agricultural fields. For each image that is analyzed, SaSbEM detects numerous suitable edges (e.g., dozens-hundreds) characterized by specific geometrical and statistical criteria. This guarantees the repeatability and reliability of the analysis. Then, it implements a standard edge method to assess the sharpness level of each edge. Finally, it performs a statistical analysis of the results to have a robust characterization of the image sharpness level and its uncertainty. The method was validated by using Landsat 8 L1T products. Results proved that: SaSbEM is capable of performing a reliable and repeatable sharpness assessment; Landsat 8 L1T data are characterized by very good sharpness performance.


Author(s):  
Tawaddod Alkindi ◽  
Mozah Alyammahi ◽  
Rahmat Agung Susantyoko

Abstract The extrusion-based AM technique has been recently employed for rapid ceramic components fabrication due to scalability and cost-efficiency. This paper investigated aspects of the extrusion technique to print ceramic materials. Specifically, we assessed and developed a process recipe of the formulations (the composition of water and ethanol-based clay mixtures) and mixing processes. Different clay paste formulations were prepared by varying clay, water, ethanol ratios. The viscosity of clay paste was measured using a DV3T Viscometer. Afterward, the produced clay paste was used as a feedstock for WASP Delta 60100 3D printer for computer-controlled extrusion deposition. We evaluated the quality of the clay paste based on (i) pumpability, (ii) printability, and (iii) buildability. Pressure and flow rate were monitored to assess the pumpability. The nozzle was monitored for continuous material extrusion to assess printability. The maximum layer-without-collapse height was monitored to assess the buildability. This study correlated the mixture composition and process parameters, to the viscosity of the mixture, at the same printing speed. We found that 85 wt% clay, 5 wt% water, 10 wt% ethanol paste formulation, with the viscosity of 828000 cP, 202400 cP, 40400 cP at 1, 5, and 50 rpm, respectively, demonstrates good pumpability, as well as best printability and buildability.


2017 ◽  
Vol 7 (9) ◽  
pp. 890 ◽  
Author(s):  
Mariya Aleksandrova ◽  
Georgi Kolev ◽  
Yordanka Vucheva ◽  
Habib Pathan ◽  
Krassimir Denishev
Keyword(s):  

2019 ◽  
Vol 19 (8) ◽  
pp. 4803-4806
Author(s):  
Shenawar Ali Khan ◽  
Hyeon-Seok Jeong ◽  
Sheik Abdur Rahman ◽  
Jin-Hyuk Bae ◽  
Woo Young Kim

2016 ◽  
Vol 847 ◽  
pp. 143-147
Author(s):  
Ya Dan Li ◽  
Zhuang Hao Zheng ◽  
Ping Fan ◽  
Jing Ting Luo ◽  
Guang Xing Liang ◽  
...  

CoSb3 thermoelectric thin films were prepared on polyimide flexible substrate by radio frequency (RF) magnetron sputtering technology using a cobalt antimony alloy target. Ti and In were added into CoSb3 thin films by co-sputtering. The influence of Ti and In on the thermoelectric properties of CoSb3 thin films was investigated. X-ray diffraction result shows that the major diffraction peaks of all the thin films match the standard peaks related to the CoSb3 phase. The sample has best thermoelectric properties when the Ti sputtering time was 1min and In sputtering time was 30 seconds.


Sign in / Sign up

Export Citation Format

Share Document