nonlinear muskingum model
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Reyhaneh Akbari ◽  
Masoud-Reza Hessami-Kermani

Abstract The Muskingum routing model is favored by water engineers owing to its simplicity and accuracy. A large amount of research is done to improve the accuracy of the model. One way to do so is to consider variable hydrological parameters during the flood routing period. In this study, the random selection (RS) method was proposed to divide the flood period of the nonlinear Muskingum model into three sub-periods. The proposed method was based on RS of members in each sub-region. It was applied to rout three flood hydrographs, and the objective function was the sum of squared errors. Comparing the results from the three variable-parameter nonlinear Muskingum model with those from the variable-parameter nonlinear Muskingum models in previous studies, the proposed model optimized the objective function in these hydrographs up to 61%. The uncertainty analysis of Muskingum parameters for Wilson's hydrograph was performed by the fuzzy alpha cut method, and it was found that the uncertainty of the parameter x is greater than the uncertainty of the parameters k and m.


2021 ◽  
Vol 16 (6) ◽  
pp. 649-656
Author(s):  
Maher Abd Ameer Kadim ◽  
Isam Issa Omran ◽  
Alaa Ali Salman Al-Taai

Flood forecasting and management are one of the most important strategies necessary for water resource and decision planners in combating flood problems. The Muskingum model is one of the most popular and widely used applications for the purpose of predicting flood routing. The particle swarm optimization (PSO) methodology was used to estimate the coefficients of the nonlinear Muskingum model in this study, comparing the results with the methods of genetic algorithm (GA), harmony search (HS), least-squares method (LSM), and Hook-Jeeves (HJ). The average monthly inflow for the Tigris River upstream at the Al-Mosul dam was selected as a case study for estimating the Muskingum model's parameters. The analytical and statistical results showed that the PSO method is the best application and corresponds to the results of the Muskingum model, followed by the genetic algorithm method, according to the following general descending sequence: PSO, GA, LSM, HJ, HS. The PSO method is characterized by its accurate results and does not require many assumptions and conditions for its application, which facilitates its use a lot in the subject of hydrology. Therefore, it is better to recommend further research in the use of this method in the implementation of future studies and applications.


Author(s):  
Umut Kırdemir ◽  
Umut Okkan

Nonlinear Muskingum method is a very efficient tool in flood routing implementation. It is possible to estimate an outflow hydrograph by a given inflow hydrograph of a flood at a specific point of the river channel. However, it turns out an optimization problem at the stage of employing this method, and it becomes important to reach the optimal model parameters so as to obtain precise outflow hydrograph estimations. Hence, it was decided to utilize five up-to-date optimization algorithms, namely, vortex search algorithm (VSA), gases brownian motion algorithm (GBMO), water cycle algorithm (WCA), flower pollination algorithm (FPA), and colliding bodies optimization (CBO). The algorithms were integrated with the nonlinear Muskingum model so as to estimate the outflow hydrograph of Wilson data, and it was deduced that WCA, FPA, and VSA perform relatively better than the models employed in the other researches before.


2016 ◽  
Vol 142 (5) ◽  
pp. 04016010 ◽  
Author(s):  
Farzan Hamedi ◽  
Omid Bozorg-Haddad ◽  
Hossein Orouji ◽  
Elahe Fallah-Mehdipour ◽  
Hugo A. Loáiciga

2016 ◽  
Vol 30 (8) ◽  
pp. 2767-2783 ◽  
Author(s):  
Xiaohui Yuan ◽  
Xiaotao Wu ◽  
Hao Tian ◽  
Yanbin Yuan ◽  
Rana Muhammad Adnan

2015 ◽  
Vol 29 (9) ◽  
pp. 3419-3440 ◽  
Author(s):  
Omid Bozorg Haddad ◽  
Farzan Hamedi ◽  
Hosein Orouji ◽  
Maryam Pazoki ◽  
Hugo A. Loáiciga

Sign in / Sign up

Export Citation Format

Share Document