hybrid beamforming
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 389)

H-INDEX

23
(FIVE YEARS 9)

2022 ◽  
Vol 12 (2) ◽  
pp. 895
Author(s):  
Laura Pierucci

Unmanned aerial vehicles (UAV) have attracted increasing attention in acting as a relay for effectively improving the coverage and data rate of wireless systems, and according to this vision, they will be integrated in the future sixth generation (6G) cellular network. Non-orthogonal multiple access (NOMA) and mmWave band are planned to support ubiquitous connectivity towards a massive number of users in the 6G and Internet of Things (IOT) contexts. Unfortunately, the wireless terrestrial link between the end-users and the base station (BS) can suffer severe blockage conditions. Instead, UAV relaying can establish a line-of-sight (LoS) connection with high probability due to its flying height. The present paper focuses on a multi-UAV network which supports an uplink (UL) NOMA cellular system. In particular, by operating in the mmWave band, hybrid beamforming architecture is adopted. The MUltiple SIgnal Classification (MUSIC) spectral estimation method is considered at the hybrid beamforming to detect the different direction of arrival (DoA) of each UAV. We newly design the sum-rate maximization problem of the UAV-aided NOMA 6G network specifically for the uplink mmWave transmission. Numerical results point out the better behavior obtained by the use of UAV relays and the MUSIC DoA estimation in the Hybrid mmWave beamforming in terms of achievable sum-rate in comparison to UL NOMA connections without the help of a UAV network.


2022 ◽  
Author(s):  
Chandan Kumar Sheemar ◽  
Dirk Slock

This paper presents two novel hybrid beamforming (HYBF) designs for a multi-cell massive multiple-input-multiple-output (mMIMO) millimeter wave (mmWave) full duplex (FD) system under limited dynamic range (LDR). Firstly, we present a novel centralized HYBF (C-HYBF) scheme based on alternating optimization. In general, the complexity of C-HYBF schemes scales quadratically as a function of the number of users and cells, which may limit their scalability. Moreover, they require significant communication overhead to transfer complete channel state information (CSI) to the central node every channel coherence time for optimization. The central node also requires very high computational power to jointly optimize many variables for the uplink (UL) and downlink (DL) users in FD systems. To overcome these drawbacks, we propose a very low-complexity and scalable cooperative per-link parallel and distributed (P$\&$D)-HYBF scheme. It allows each mmWave FD base station (BS) to update the beamformers for its users in a distributed fashion and independently in parallel on different computational processors. The complexity of P$\&$D-HYBF scales only linearly as the network size grows, making it desirable for the next generation of large and dense mmWave FD networks. Simulation results show that both designs significantly outperform the fully digital half duplex (HD) system with only a few radio-frequency (RF) chains and achieve similar performance. <br>


Author(s):  
Zhiyan Liu ◽  
Yuwen Yang ◽  
Feifei Gao ◽  
Ting Zhou ◽  
Hongbing Ma

2021 ◽  
Author(s):  
Ahmet M. Elbir ◽  
Kumar Vijay Mishra ◽  
Symeon Chatzinotas

Accepted paper in 2021 17th International Symposium on Wireless Communication Systems (ISWCS)


2021 ◽  
Author(s):  
Ahmet M. Elbir ◽  
Kumar Vijay Mishra ◽  
Symeon Chatzinotas

Accepted paper in 2021 17th International Symposium on Wireless Communication Systems (ISWCS)


Author(s):  
SRINIVAS K ◽  
T Srinivasulu

Power consumption and hardware cost reduction with the use of hybrid beamforming in large-scale millimeter wave MIMO systems. The large dimensional analog precoding integrates with the hybrid beamforming based on the phase shifters including digital precoding with lower dimensionality. The reduction of Euclidean distance between the hybrid precoder and fully digital is the major problem to overcome the minimization of resultant spectral efficiency. The issue formulates as a fully digital precoder’s matrix factorization problem based on the analog RF precoder matrix and the digital baseband precoder matrix. An additional element-wise unit modulus constraint is imposed by the phase shifters on the analog RF precoder matrix. The traditional methods have a problem of performance loss in spectral efficiency. In the processing time and iteration, high complexities result in optimization algorithms. In this paper, a novel low complexity algorithm proposes which maximizes the spectral efficiency and reduces the computational processing time. 


Sign in / Sign up

Export Citation Format

Share Document