scholarly journals A New Anelasticity Model for Wave Propagation in Partially Saturated Rocks

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7619
Author(s):  
Chunfang Wu ◽  
Jing Ba ◽  
Xiaoqin Zhong ◽  
José M. Carcione ◽  
Lin Zhang ◽  
...  

Elastic wave propagation in partially saturated reservoir rocks induces fluid flow in multi-scale pore spaces, leading to wave anelasticity (velocity dispersion and attenuation). The propagation characteristics cannot be described by a single-scale flow-induced dissipation mechanism. To overcome this problem, we combine the White patchy-saturation theory and the squirt flow model to obtain a new anelasticity theory for wave propagation. We consider a tight sandstone Qingyang area, Ordos Basin, and perform ultrasonic measurements at partial saturation and different confining pressures, where the rock properties are obtained at full-gas saturation. The comparison between the experimental data and the theoretical results yields a fairly good agreement, indicating the efficacy of the new theory.

2021 ◽  
Vol 9 ◽  
Author(s):  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Yunzhao Zhang ◽  
Guoping Liu ◽  
Shaoqun Dong

The Chang 8 Member of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin is a typical tight sandstone reservoir and has an average porosity of 8.60% and air permeability 0.20 mD. Multi-scale faults and fractures are widely developed in these reservoirs. In this study, three-dimensional seismic data, outcrops, cores, imaging logs, and thin sections were used to classify faults and fractures at multiple scales. Combined with the oil production data, the influence of multi-scale faults and fractures on the oil enrichment and production was analyzed. The results show multi-scale faults and fractures can be divided into six levels: type-I faults, type-II faults, large-scale fractures, mesoscale fractures, small-scale fractures, and micro-scale fractures. As the scale decreases, the number of fractures increases in a power function. Type-I faults cut the caprocks and are not conducive to the preservation of oil. Type-II faults connect the source rocks and reservoirs and are migration channels of the oil source. Large-scale fractures cut the mudstone interlayer and are the seepage channel inside the reservoir. Mesoscale fractures are controlled by thick interlayers, and small-scale fractures are restricted by thin interlayers or layer interfaces. These fractures are the main seepage channels and effective storage spaces. Micro-scale fractures serve as important storage spaces for these reservoirs. The case study of oil reservoir development proves that type-I faults have the greatest impact on fluid flow, while wells drilled into the type-II faults zone have a higher oil production capacity. The oil production changes with the development degree of fractures in different scales, strikes, and positions of faults. Meso- and small-scale fractures are the key to influencing the early single-well production, and micro-scale fractures are conducive to the stable production of single wells. Consequently, multi-scale faults and fractures have significantly different effects on the oil enrichment and production of tight sandstone reservoirs, and the research conclusions can guide to the exploration and development of such similar reservoirs.


2017 ◽  
Author(s):  
Chuang Liu ◽  
◽  
Jianguang Wu ◽  
Jianhua Zhong ◽  
Shouren Zhang ◽  
...  

2021 ◽  
pp. 014459872199851
Author(s):  
Yuyang Liu ◽  
Xiaowei Zhang ◽  
Junfeng Shi ◽  
Wei Guo ◽  
Lixia Kang ◽  
...  

As an important type of unconventional hydrocarbon, tight sandstone oil has great present and future resource potential. Reservoir quality evaluation is the basis of tight sandstone oil development. A comprehensive evaluation approach based on the gray correlation algorithm is established to effectively assess tight sandstone reservoir quality. Seven tight sandstone samples from the Chang 6 reservoir in the W area of the AS oilfield in the Ordos Basin are employed. First, the petrological and physical characteristics of the study area reservoir are briefly discussed through thin section observations, electron microscopy analysis, core physical property tests, and whole-rock and clay mineral content experiments. Second, the pore type, throat type and pore and throat combination characteristics are described from casting thin sections and scanning electron microscopy. Third, high-pressure mercury injection and nitrogen adsorption experiments are optimized to evaluate the characteristic parameters of pore throat distribution, micro- and nanopore throat frequency, permeability contribution and volume continuous distribution characteristics to quantitatively characterize the reservoir micro- and nanopores and throats. Then, the effective pore throat frequency specific gravity parameter of movable oil and the irreducible oil pore throat volume specific gravity parameter are introduced and combined with the reservoir physical properties, multipoint Brunauer-Emmett-Teller (BET) specific surface area, displacement pressure, maximum mercury saturation and mercury withdrawal efficiency parameters as the basic parameters for evaluation of tight sandstone reservoir quality. Finally, the weight coefficient of each parameter is calculated by the gray correlation method, and a reservoir comprehensive evaluation indicator (RCEI) is designed. The results show that the study area is dominated by types II and III tight sandstone reservoirs. In addition, the research method in this paper can be further extended to the evaluation of shale gas and other unconventional reservoirs after appropriate modification.


Sign in / Sign up

Export Citation Format

Share Document