small eccentricity
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (3) ◽  
pp. 940
Author(s):  
Mingyu Xu ◽  
Wei Chen

To study the application of liquid metal (LM) in the field of practical lubrication, the viscosity of gallium based liquid metal (GBLM) was measured initially, and the relationship between viscosity and temperature was fitted to obtain the viscosity under high temperature. Under the simulated high temperature and vacuum working environment of computed tomography tube (CTT) machines, considering the influence of turbulence, the changes, with eccentricity, of bearing capacity, discharge, friction power consumption, temperature rise, stiffness, and critical mass of the GBLM lubricated V-groove bearing (V-g B) were analyzed. Due to the special structure of V-g B, the coordinate transformation was carried out and the turbulent Reynolds equation was solved by using the finite difference method and the local integral method. The bearing film thickness and pressure distribution under the two coordinate systems were analyzed and compared and the pressure distribution of V-g B under small eccentricity and large eccentricity was studied, respectively. The performance of GBLM lubricated V-g B was studied, which provides theoretical guidance and an analytical method for LM bearing of high-performance CT equipment.


2021 ◽  
Vol 17 (3) ◽  
pp. 247-261
Author(s):  
A. P. Markeev ◽  

The main purpose of this paper is to investigate nonlinear oscillations of the gravitational dipole in a neighborhood of its nominal mode. The orbit of the center of mass is assumed to be circular or elliptic with small eccentricity. Consideration is given both to planar and arbitrary spatial deviations of the gravitational dipole from its position corresponding to the nominal mode. The analysis is based on the classical Lyapunov and Poincaré methods and the methods of Kolmogorov – Arnold – Moser (KAM) theory. The necessary calculations are performed using computer algorithms. An analytic representation is given for conditionally periodic oscillations. Special attention is paid to the problem of the existence of periodic motions of the gravitational dipole and their Lyapunov stability, formal stability (stability in an arbitrarily high, but finite, nonlinear approximation) and stability for most (in the sense of Lebesgue measure) initial conditions.


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1098 ◽  
Author(s):  
Lijing Shao

Lorentz symmetry is an important concept in modern physics. Precision pulsar timing was used to put tight constraints on the coefficients for Lorentz violation in the pure-gravity sector of the Standard-Model Extension (SME). We extend the analysis to Lorentz-violating matter-gravity couplings, utilizing three small-eccentricity relativistic neutron star (NS)—white dwarf (WD) binaries. We obtain compelling limits on various SME coefficients related to the neutron, the proton, and the electron. These results are complementary to limits obtained from lunar laser ranging and clock experiments.


2019 ◽  
Vol 11 (03) ◽  
pp. 661-690 ◽  
Author(s):  
Michał Adamaszek ◽  
Henry Adams ◽  
Samadwara Reddy

For [Formula: see text] a metric space and [Formula: see text] a scale parameter, the Vietoris–Rips simplicial complex [Formula: see text] (resp. [Formula: see text]) has [Formula: see text] as its vertex set, and a finite subset [Formula: see text] as a simplex whenever the diameter of [Formula: see text] is less than [Formula: see text] (resp. at most [Formula: see text]). Though Vietoris–Rips complexes have been studied at small choices of scale by Hausmann and Latschev [13,16], they are not well-understood at larger scale parameters. In this paper we investigate the homotopy types of Vietoris–Rips complexes of ellipses [Formula: see text] of small eccentricity, meaning [Formula: see text]. Indeed, we show that there are constants [Formula: see text] such that for all [Formula: see text], we have [Formula: see text] and [Formula: see text], though only one of the two-spheres in [Formula: see text] is persistent. Furthermore, we show that for any scale parameter [Formula: see text], there are arbitrarily dense subsets of the ellipse such that the Vietoris–Rips complex of the subset is not homotopy equivalent to the Vietoris–Rips complex of the entire ellipse. As our main tool we link these homotopy types to the structure of infinite cyclic graphs.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2139 ◽  
Author(s):  
Yonghui Hou ◽  
Shuangyin Cao ◽  
Xiangyong Ni ◽  
Yizhu Li

The use of new developed high-strength steel in concrete members can reduce steel bar congestion and construction costs. This research aims to study the behavior of concrete columns reinforced with new developed high-strength steel under eccentric loading. Ten reinforced concrete columns were fabricated and tested. The test variables were the transverse reinforcement amount and yield strength, eccentricity, and longitudinal reinforcement yield strength. The failure patterns were compression and tensile failure for columns subjected to small eccentricity and large eccentricity, respectively. The same level of post-peak deformability and ductility could only be obtained with a lower amount of transverse reinforcement when high-strength transverse reinforcements were used in columns subjected to small eccentricity. The high-strength longitudinal reinforcement improved the bearing capacity and post-peak deformability of the concrete columns. Furthermore, three different equivalent rectangular stress block (ERSB) parameters for predicting the bearing capacity of columns with high-strength steel are discussed based on test and simulated results. It is concluded that the China Code GB 50010-2010 overestimates the bearing capacity of columns with high-strength steel, whereas the bearing capacities computed using the America Code ACI 318-14 and Canada Code CSA A23.3-04 agree well with the test results.


Author(s):  
Yonghui Hou ◽  
Shuangyin Cao ◽  
Xiangyong Ni ◽  
Yizhu Li

The use of new developed high-strength steel in concrete members can reduce steel bars congestion and construction costs. This research aims to study the behavior of concrete columns reinforced with new developed high-strength steel under eccentric loading. Ten reinforced concrete columns were fabricated and tested. The test variables are transverse reinforcement amount and yield strength, eccentricity, and longitudinal reinforcement yield strength. The failure patterns are compression and tensile failure for columns subjected to small eccentricity and large eccentricity, respectively. The same level of post-peak deformability and ductility only can be obtained with lower amount of transverse reinforcement when high-strength transverse reinforcements are used in columns subjected to small eccentricity. The high-strength longitudinal reinforcement can improve bearing capacity and post-peak deformability of concrete columns. Besides, three different equivalent rectangular stress block (ERSB) parameters in predicting bearing capacity of columns with high-strength steel were discussed based on test and simulated results. It is concluded that the Code of GB 50010-2010 overestimates the bearing capacity of columns with high-strength steel, whereas bearing capacities computed using Codes of ACI 318-14 and CSA A23.3-04 agree well with test results.


A model is proposed for describing the shape change of isotropic and anisotropic graphite under the influence of high temperatures and high neutron radiation fluences. The model is based on a new approach, which uses the following provisions: description of the near-pore neighborhood in graphite as a solid solution using the theory of phase transformations of the first kind; consideration of a new phase as a spheroidal pore of small eccentricity, flattened along the direction of greatest stress; taking into account the clustering of carbon atoms at fluences of more than . The graphite non-isotropy is characterized by different pore sizes, different diffusion coefficients, the lengths of the paths of graphite atoms along and across volume of the sample, which in turn depend on the temperature of the sample. It is proposed that the initial element on the basis of which a new phase will be formed is the spheroidal pore of small eccentricity, flattened along the direction of the highest tension. A kinetic equation that describes the diffusion of pores under the influence of high temperatures and intense neutron fluxes is obtained. Initially, the pores are in a field of predetermined stresses oriented along and across the sample. The contribution of diffusion processes is due to the term proportional to the pore distribution function in the sample, and the effect of the neutron flux is described by an additional term in the kinetic equation. The obtained kinetic equation for anisotropic graphite can be transformed for isotropic graphite. For isotropic and anisotropic graphite, model solutions have been obtained that characterize the change in its volume with time under the influence of a neutron flux and high temperature. It is shown that the magnitude of the change in the relative volume of reactor graphite for isotropic graphite exceeds a similar value for anisotropic graphite. Theoretical confirmation of the laws governing the swelling of anisotropic graphites under the influence of large neutron fluences and in the high-temperature field, previously obtained by other authors, is obtained: longitudinal compression of anisotropic graphite samples corresponds to a change in the linear dimensions of isotropic graphites; the transverse compression of anisotropic graphite samples is less than the change in the longitudinal linear dimensions of isotropic graphites.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 390 ◽  
Author(s):  
Ihsan A. S. Al- Shaarbaf ◽  
Mohammed J. H. Al-zubaidi ◽  
Emad A. A. Al- Zaidy

In this research the behavior of reinforced concrete slender columns with longitudinal hole under axial compression load and uniaxial bending is investigated. The paper includes testing of ten slender columns with dimensions (150 150 1300 mm). The investigation deals with the effect of using different diameters of  column hole on the values of the load carrying capacity and cracking loads, mid-height lateral deflection and longitudinal shortening of the columns. Five diameters for the column holes were considered (0, 25.4, 38.1, 50.8,  and 76.2)mm. Test results have showed that when the holes were located at the center of the column cross-section and the column was loaded with high load eccentricity, the effect of hollowing ratio on load capacity is insignificant. For hollowing ratios used in this study (0%, 2.3% ,5.1%, 9% and 20.3%), the ultimate load is decreased by (0%, 0.28%, 1.03%, 3.28% and 6.48%) respectively. The effect of hollowing ratio on columns  loaded with small eccentricity of 50mm (e/h=.33)  is greater than the effect of hollow ratio of columns with 150 mm eccentricity(e/h=1.0) which reduces the load capacity  for the columns by (0.00%, 0.66%, 2.65%, 4.97% and 11.26%) for hollowing ratios (0%, 2.3%, 5.1%, 9% and 20.3%) respectively.  


Sign in / Sign up

Export Citation Format

Share Document